BG视讯

欢迎访问 草业科学,今天是

BG视讯tudiliyongqiangduyanjiujinzhan、pingjingwentiyuqianjingzhanwang

孙菲菲 张增祥 左丽君 赵晓丽 潘天石 朱自娟 汪潇 刘芳 易玲 温庆可 胡顺光 徐进勇

引用本文: 孙菲菲,张增祥,左丽君,赵晓丽,潘天石,朱自娟,汪潇,刘芳,易玲,温庆可,胡顺光,徐进勇. 土地利用强度研究进展、瓶颈问题与前景展望. 草业科学, 2020, 37(7): 1-13 doi: 10.11829/j.issn.1001-0629.2020-0074 shu
Citation:  SUN F F, ZHANG Z Z, ZUO L J, ZHAO X L, PAN T Y, ZHU Z J, WANG X, LIU F, YI L, WEN Q K, HU S G, XU J Y. Current bottlenecks and prospects of the land use intensity. Pratacultural Science, 2020, 37(7): 1-13 doi: 10.11829/j.issn.1001-0629.2020-0074 shu

土地利用强度研究进展、瓶颈问题与前景展望

    作者简介: 孙菲菲(1984-),女,山东德州人,助理研究员,博士,研究方向为土地利用与生态遥感应用。E-mail: sunff@aircas.ac.cn;
    通讯作者: 左丽君, zuolj@radi.ac.cn
  • 基金项目:BG视讯 国家水体污染控制与治理科技重大专项(2017ZX07101001)

摘要: 本文综述了近50年来土地利用强度概念、驱动机制、方法和关键问题的发展演变,将其划分为3个研究分支: 1)基于人口密度计算人类活动强度的研究;2)以传统的投入和产出强度方法为代表的研究,以及由此发展而来的复种指数、τ因子方法和技术效率方法等;3)以基于物质和能量的社会经济流通机制的土地利用强度概念模型和HANPP (human appropriation of net primary productivity)指标为代表的研究。针对土地利用强度研究,呈以下趋势: 人口密度作为衡量土地利用强度的指标逐渐被以物质和能量社会经济流通机制为基础的土地利用强度概念模型所取代;土地利用强度评估方法也由指标构建研究倾向于解决不同自然环境下指标评估比较的关键技术与瓶颈问题,即人为与自然影响的区分;遥感数据和方法在人为活动定量识别研究中展现出巨大应用潜力和价值,可以作为土地利用强度评估方法瓶颈的突破点;农、林和草牧业等土地利用类型的强度变化机制研究极不均衡。构建均衡发展的土地利用强度评估机制和指标技术体系成为未来土地利用强度研究的必然趋势。

English

    1. [1]

      TILMAN D, BALZE C, HILL J, BEFORT B L.  From the cover: Global food demand and the sustainable intensification of agriculture[J]. Proceedings of the National Academy of Sciences of the United States of AmericaBG视讯, 2011, 108(50): 220-225.

    2. [2]

      庄大方, 刘纪远.  中国土地利用程度的区域分异模型研究[J]. 自然资源学报, 1997, 12(2): 105-111. doi:
      ZHUANG D F, LIU J Y.  Study on the model of regional differentiation of land use degree in China[J]. Journal of Natural Resources, 1997, 12(2): 105-111. doi:

    3. [3]

      李秀彬, 朱会义, 谈明洪, 辛良杰.  土地利用集约度的测度方法[J]. 地理科学进展, 2008, 27(6): 12-17. doi:
      LI X B, ZHU H Y, TAN M H, XIN L J.  Measurement of land use intensity[J]. Progress in Geography, 2008, 27(6): 12-17. doi:

    4. [4]

      于立忠, 朱教君, 张艳红, 赵风军, 邹永田.  森林干扰度评价[J]. 生态学杂志, 2009, 28(5): 976-982.
      YU L Z, ZHU J J, ZHANG Y H, ZHAO F J, ZOU Y T.  Evaluation of response extent of forests to disturbances[J]. Chinese Journal of EcologyBG视讯, 2009, 28(5): 976-982.

    5. [5]

      ZHOU Y L, LAI C G, WANG Z L, CHEN X H, ZENG Z Y CHENG J C, BAI XY.  Quantitative evaluation of the impact of climate change and human activity on runoff change in the Dongjiang River basin, China[J]. Water, 2018, 10(5): 571-588. doi:

    6. [6]

      刘芳, 闫慧敏, 刘纪远, 肖向明, 秦元伟.  21世纪初中国土地利用强度的空间分布格局[J]. 地理学报, 2016, 71(7): 1130-1143.
      LIU F, YAN H M, LIU J Y, XIANG X M, QIN Y W.  Spatial pattern of land use intensity in China in 2000[J]. Acta Geographica Sinica, 2016, 71(7): 1130-1143.

    7. [7]

      BG视讯 boserup e. the conditions of agricultural growth. // the economics of agrarian change under population pressure. london, britain: george allen & unwin ltd, 1965.

    8. [8]

      erb k h, fetzel t, haberl h, kastner t, plutzar c. beyond inputs and outputs: opening the black-box of land-use intensity. switzerland: springer international publishing, 2016.

    9. [9]

      NEUMANN K, VERBURG P H, STEHFEST E, MüLLER C.  The yield gap of global grain production: A spatial analysis[J]. Agricultural Systems, 2010, 103(5): 316-326. doi:

    10. [10]

      ERB K H, HABERL H, JEPSEN M R, KUEMMERLE T, LINDNER M, MüLLER D, VERBURG P H, REENBERG A.  A conceptual framework for analysing and measuring land-use intensity[J]. Current Opinion in Environmental Sustainability, 2013, 5(5): 464-470. doi:

    11. [11]

      SHRIAR A J.  Agricultural intensity and its measurement in frontier regions[J]. Agroforestry Systems, 2000, 49(3): 301-318. doi:

    12. [12]

      ROLANDO J L, TURIN C, RAMÍREZ D A, MARES V, MONERRIS J, QURIROZ R.  Key ecosystem services and ecological intensification of agriculture in the tropical high-andean puna as affected by land-use and climate changes[J]. Agriculture Ecosystems & EnvironmentBG视讯, 2017, 236(): 221-233.

    13. [13]

      EOM S, SUZUKI T, LEE M H.  A land-use mix allocation model considering adjacency, intensity, and proximity[J]. International Journal of Geographical Information Science, 2020, 34(5): 899-923. doi:

    14. [14]

      DIETRICH J P, SCHMITZ C, MüLLER C, FADER M, LOTZE-CAMPEN H, POPP A.  Measuring agricultural land-use intensity: A global analysis using a model-assisted approach[J]. Ecological ModellingBG视讯, 2012, 232(1): 109-118.

    15. [15]

      BG视讯 coelli t j, rao d s p, o'donnell c j, battese g e. an introduction to efficiency and productivity analysis. new york: springer science & business media, 2005.

    16. [16]

      BG视讯 erb k h, niedertscheider m, dietrich j p, schmitz c, verburg p h, jepsen m r, haberl h. conceptual and empirical approaches to mapping and quantifying land-use intensity. // in: fischer-kowalski m, reenberg a, schaffartzik a, mayer a. (eds) ester boserup’s legacy on sustainability. human-environment interactions, vol 4. dordrecht: springer, 2014: 61-86.

    17. [17]

      ELLIS E C, RAMANKUTTY N.  Putting Putting people in the map: Anthropogenic biomes of the world[J]. Frontiers in Ecology and the Environment, 2008, 6(8): 439-447. doi:

    18. [18]

      TURNER D P, RITTS W D, COHEN W B, MAEIRSPERGER T K, GOWER S T, KIRSCHBAUM A A, RUNNING S W, ZHAO M S, WOFSY S C, DUNN A L, LAW B E, CAMPBELL J L, OECHEL W C, KWON H J, MEYERS T P, SMALL E E, KURC S A, GAMON J A.  Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring[J]. Global Change Biology, 2005, 11(4): 666-684. doi:

    19. [19]

      FIELD C B, BEHRENFELD M J, RANDERSON J T, FALKOWSKI P.  Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(): 237-. doi:

    20. [20]

      GU Y, WYLIE B K.  Developing a 30-m grasslandp productivity estimation map for central Nebraska using 250-m modis and 30-m landsat-8 observations[J]. Remote Sensing of Environment, 2015, 171(): 291-298. doi:

    21. [21]

      PENG S S, PIAO S L, ZENG Z Z, CIAIS P, ZHOU L M, LI L Z X, MYNENI R B, YIN Y, ZENG H.  Afforestation in china cools local land surface temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2915-2919. doi:

    22. [22]

      EVANS J, GEERKEN R.  Discrimination between climate and human-induced dryland degradation[J]. Journal of Arid Environments, 2004, 57(4): 535-554. doi:

    23. [23]

      SEAQUIST J W, HICKLER T, EKLUNDH L, ARDO J, HEUMANN B W.  Disentangling the effects of climate and people on sahel vegetation dynamics[J]. Biogeosciences, 2009, 6(3): 469-477. doi:

    24. [24]

      LI A, WU J, HUANG J H.  Distinguishing between human-induced and climate-driven vegetation changes: A critical application of restrend in inner mongolia[J]. Landscape Ecology, 2012, 27(7): 969-982. doi:

    25. [25]

      KENNEDY R E, YANG Z, COHEN W B, PFAFF E, BRAATEN J, NELSON P.  Spatial and temporal patterns of forest disturbance and regrowth within the area of the northwest forest plan[J]. Remote Sensing of EnvironmentBG视讯, 2012, 122(4): 117-133.

    26. [26]

      PFLUGMACHER D, COHEN W B, KENNEDY R E, YANG Z Q.  Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics[J]. Remote Sensing of Environment, 2014, 151(): 124-137. doi:

    27. [27]

      MURILLO-SANDOVAL P J, HILKER T, KRAWCHUK M A, VAN D J.  Detecting and attributing drivers of forest disturbance in the Colombian Andes using landsat time-series[J]. Forest, 2018, 9(5): 269-. doi:

    28. [28]

      BG视讯 brookfield h c. notes on the theory of land management. plec news and views, 1993: 128-132.

    29. [29]

      BG视讯 netting r m. smallholders, householders: farm families and the ecology of intensive, sustainable agriculture. palo alto: stanford university press, 1993.

    30. [30]

      BG视讯 torben b t, anette r. the dwindling role of population pressure in land use change: a case from the southwest pacific.//in:  fischer-kowalski  m,  reenberg  a,schaffartzik  a,  mayer  a.  (eds)  ester  boserup’s  legacy  on  sustainability. human-environment  interactions,  vol  4.dordrecht: springer, 2014: 45-60.

    31. [31]

      LAMBIN E F, MEYFROIDT P.  Global land use change, economic globalization, and the looming land scarcity[J]. Proceedings of the National Academy of Sciences, 2011, 108(9): 3465-3472. doi:

    32. [32]

      MARINA F K, SINGH S J, LAUK C, REMESCH A, RINGHOFER L, GRÜNBÜHEL C M.  Sociometabolic transitions in subsistence communities: Boserup revisited in four comparative case studies[J]. Human Ecology ReviewBG视讯, 2011, 18(2): 147-158.

    33. [33]

      ERB K H.  How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity[J]. Ecological Economics the Journal of the International Society for Ecological Economics, 2012, 341(100): 8-14.

    34. [34]

      TURNER B L, REENBERG A.  The emergence of land change science for global environmental change and sustainability[J]. Proceedings of the National Academy of Sciences, 2007, 104(52): 20666-20671. doi:

    35. [35]

      BG视讯 boserup e. population and technological change: a study of long-term trends. chicago: the university chicago press, 1981.

    36. [36]

      VAN-DER-SLUIS T, PEDROLI G B M, KRISTENSEN S B P, COSOR G L.  Changing land use intensity in Europe - recent processes in selected case studies[J]. Land Use Policy, 2016, 57(1): 777-785.

    37. [37]

      ESTEL S, KUEMMERLE T, LEVERS C, BAUMANN M, HOSTERT P.  Mapping cropland-use intensity across europe using modis NDVI time series[J]. Environmental Research Letters, 2016, 11(2): 024015-.

    38. [38]

      GóMEZ GIMéNEZ M, DE JONG R, DELLA PERUTA R, KELLER A, SCHAEPMAN M E.  Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators[J]. Remote Sensing of Environment, 2017, 198(): 126-139. doi:

    39. [39]

      LUYSSAERT S, HESSENMÖLLER D, VON LÜPKE N, KAISER S, SCHULZE E D.  Quantifying land ue and disturbance intensity in forestry, based on the self-thinning relationship[J]. Ecological Applications, 2011, 21(8): 3272-3284. doi:

    40. [40]

      TURNER B L, DOOLITTLE W E.  The concept and measure of agricultural intensity[J]. Professional Geographer, 1978, 30(3): 297-301. doi:

    41. [41]

      brookfield h c, hart d. melanesia: a geographical interpretation of an island world. britain: methuen, 1971.

    42. [42]

      LUNETTA R S, KNIGHT J F, EDIRIWICKREMA J, LYON J G, WORTHY L D.  Land-cover change detection using multi temporal modis NDVI data[J]. Remote Sensing of Environment, 2006, 105(2): 142-154. doi:

    43. [43]

      ZHANG X, FRIEDL M A, SCHAAF C B, STRAHLER A H, HODGES J C, GAO F, REED B C, HUETE A.  Monitoring vegetation phenology using modis[J]. Remote sensing of environment, 2003, 84(3): 471-475. doi:

    44. [44]

      闫慧敏, 曹明奎, 刘纪远, 庄大方, 郭建坤, 刘明亮.  基于多时相遥感信息的中国农业种植制度空间格局研究[J]. 农业工程学报, 2005, 21(4): 85-90. doi:
      YAN H M, CAO M K, LIU J Y, ZHUANG D F, GUO J K, LIU M L.  Characterizing spatial patterns of multiple cropping system in China from multi-temporal remote sensing images[J]. Transactions of the CSAE, 2005, 21(4): 85-90. doi:

    45. [45]

      范锦龙, 吴炳方.  复种指数遥感监测方法[J]. 遥感学报, 2004, 8(6): 628-636. doi:
      FAN J L, WU B F.  A methodology for retrieving cropping index from NDVI profile[J]. Journal of Remote Sensing, 2004, 8(6): 628-636. doi:

    46. [46]

      丁明军, 陈倩, 辛良杰, 李兰晖, 李秀彬.  1999 – 2013年中国耕地复种指数的时空演变格局[J]. 地理学报, 2015, 70(7): 1080-1090.
      DING M J, CHEN Q, XIN L J, LI L H, LI X B.  Spatial and temporal variations of multiple cropping index in China based on SPOT-NDVI during 1999 – 2013[J]. Acta Geographica SinicaBG视讯, 2015, 70(7): 1080-1090.

    47. [47]

      SHARMA A, HUBERT-MOY L, BUVANESHWARI S, SEKHAR M, RUIZ L, BANDYOPADHYAY S, CORGNE S.  Irrigation history estimation using multitemporal landsat satellite images: Application to an intensive groundwater irrigated agricultural watershed in india[J]. Remote Sensing, 2018, 10(6): 893-. doi:

    48. [48]

      JIN S, SADER S A.  Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances[J]. Remote Sensing of Environment, 2005, 94(3): 364-372. doi:

    49. [49]

      沈文娟, 李明诗, 黄成全.  长时间序列多源遥感数据的森林干扰监测算法研究进展[J]. 遥感学报, 2018, 22(6): 109-126.
      SHEN W J, LI M S, HUANG C Q.  Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion[J]. Journal of Remote SensingBG视讯, 2018, 22(6): 109-126.

    50. [50]

      KLEIJN D, KOHLER F, BÁLDI A, BATÁRY P, CONCEPCIÓN E D, CLOUGH Y, DÍAZ M, GABRIEL D, HOLZSCHUH A, KNOP E.  On the relationship between farmland biodiversity and land-use intensity in Europe[J]. Proceedings Biological Sciences, 2009, 276(): 903-909. doi:

    51. [51]

      TEMME A J A M, VERBURG P H.  Mapping and modelling of changes in agricultural intensity in Europe[J]. Agriculture Ecosystem and Environment, 2011, 140(1/2): 46-56. doi:

    52. [52]

      陈瑜琦, 李秀彬.  1980年以来中国耕地利用集约度的结构特征[J]. 地理学报, 2009, 64(4): 469-478. doi:
      CHEN Y Q, LI X B.  Structural Change of agricultural land use intensity and its regional disparity in China[J]. Acta Geographica Sinica, 2009, 64(4): 469-478. doi:

    53. [53]

      张富刚, 郝晋珉, 姜广辉, 丁忠义, 李新波, 李涛.  中国城市土地利用集约度时空变异分析[J]. 中国土地科学, 2005, 19(1): 23-29. doi:
      ZHANG F G, HAO J M, JIANG G H, DING Z Y, LI X B, LI T.  Spatial-temporal variance of urban land use intensity[J]. China Land Science, 2005, 19(1): 23-29. doi:

    54. [54]

      SUN F, SUN W, HUANG Y, ZHANG W, YU L, WANG J.  Precipitation does not amplify the efficiency of fencing measures for temperate grassland restoration: A case study in northern china based on remote sensing[J]. Ecological Engineering, 2017, 105(): 252-261. doi:

    55. [55]

      ZHANG J, QUINE T A, SHIJUN N I, FANGLONG G E.  Stocks and dynamics of soc in relation to soil redistribution by water and tillage erosion[J]. Global Change Biology, 2006, 12(10): 1834-1841. doi:

    56. [56]

      pingali p, bigot y, binswanger h p. agricultural mechanization and the evolution of farming systems in sub-saharan africa. baltimore: johns hopkins university press, 1987.

    57. [57]

      王向东, 刘小茜, 裴韬, 王振波.  基于技术效率测算的京津冀城市土地集约利用潜力评价[J]. 地理学报, 2019, 74(9): 1853-1865. doi:
      WANG X D, LIU X Q, PEI T, WANG Z B.  Potential evaluation of urban land intensive use in Beijing-Tianjin-Hebei region based on measurement of technical efficiency[J]. Acta Geographica Sinica, 2019, 74(9): 1853-1865. doi:

    58. [58]

      ERB K H, KRAUSMANN F, LUCHT W, HABERL H.  Embodied HANPP: mapping the spatial disconnect between global biomass production and consumption[J]. Ecological Economics, 2009, 69(2): 328-334. doi:

    59. [59]

      KATES R W, HYDEN G, D T B.  Population Growth & Agricultural Change in Africa[J]. Florida: University Press of FloridaBG视讯, 1993, (): 1-45.

    60. [60]

      REGA C, SHORT C, PEREZ-SOBA M, PARACCHINI M L.  A classification of european agricultural land using an energy-based intensity indicator and detailed crop description[J]. Landscape and Urban Planning, 2020, (): 198-.

    61. [61]

      陈爱莲, 朱博勤, 陈利顶, 吴艳华, 孙然好.  双台河口湿地景观及生态干扰度的动态变化[J]. 应用生态学报, 2010, 21(5): 1120-1128.
      CHEN A L, ZHU B Q, CHEN L D, WU Y H, SUN R H.  Dynamic changes of landscape pattern and eco-disturbance degree in shuangtai estuary wetland of Liaoning province, China[J]. Journal of Applied Ecology, 2010, 21(5): 1120-1128.

    62. [62]

      李迈和, NORBERT K, 杨健.  生态干扰度: 一种评价植被天然性程度的方法[J]. 地理科学进展, 2002, 21(5): 450-458. doi:
      LI M H, NORBERT K, YANG J.  Hemeroby: A method to assess the naturalness of vegetation[J]. Progress in Geography, 2002, 21(5): 450-458. doi:

    63. [63]

      VITOUSEK P M, EHRLICH P R, EHRLICH A H, MATSON P A.  Human appropriation of the products of photosynthesis[J]. BioScience, 1986, 36(6): 368-373. doi:

    64. [64]

      IMHOFF M L, BOUNOUA L, RICKETTS T, LOUCKS C, HARRISS R, LAWRENCE W T.  Global patterns in human consumption of net primary production[J]. Nature, 2004, 429(): 870-873. doi:

    65. [65]

      O’NEILL D W, TYEDMERS P H, BEAZLEY K F.  Human appropriation of net primary production (HANPP) in Nova Scotia, Canada[J]. Regional Environmental Change, 2007, 7(1): 1-14. doi:

    66. [66]

      HABERL H, ERB K H, KRAUSMANN F, GAUBE V, BONDEAU A, PLUTZAR C, GINGRICH S, LUCHT W, FISCHER-KOWALSKI M.  Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences, 2007, 104(31): 12942-12947. doi:

    67. [67]

      HABERL H, ERB K H, KRAUSMANN F.  Human appropriation of net primary production: patterns, trends, and planetary boundaries[J]. Annual Review of Environment and Resources, 2014, 39(): 363-391. doi:

    68. [68]

      ZHOU W, GANG C C, ZHOU F C, LI J L, DONG X G, ZHAO C Z.  Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest china using net primary productivity as an indicator[J]. Ecological Indicators, 2015, 48(): 560-569. doi:

    69. [69]

      LOREL C, PLUTZAR C, ERB K H, MOUCHET M.  Linking the human appropriation of net primary productivity-based indicators, input cost and high nature value to the dimensions of land-use intensity across French agricultural landscapes[J]. Agriculture Ecosystems & EnvironmentBG视讯, 2019, 10(6): 283-.

    70. [70]

      FENG X M, ZHAO Y S.  Grazing intensity monitoring in northern china steppe: Integrating century model and modis data[J]. Ecological Indicators, 2011, 11(1): 175-182. doi:

    71. [71]

      ZHOU W, GANG C C, ZHOU L, CHEN Y Z, LI J L, JU W M, ODEH I.  Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China[J]. Acta Oecologica-International Journal of Ecology, 2014, 55(): 86-96. doi:

    72. [72]

      HABERL H, PLUTZAR C, ERB K-H, GAUBE V, POLLHEIMER M, SCHULZ N B.  Human appropriation of net primary production as determinant of avifauna diversity in Austria[J]. Agriculture, Ecosystems & Environment, 2005, 110(3/4): 119-131.

    73. [73]

      BG视讯 haberl h, erb k h, gingrich s, kastner t, krausmann f. human appropriation of net primary production, stocks and flows of carbon, and biodiversity.// lal r, lorenz k, hüttl r, schneider b, von braun j. (eds) ecosystem services and carbon sequestration in the biosphere. dordrecht, london: springer, 2013: 313-331.

    74. [74]

      PAN Y, YU C, ZHANG X, CHEN B, WU J, TU Y, MIAO Y, LUO L.  A modified framework for the regional assessment of climate and human impacts on net primary productivity[J]. Ecological IndicatorsBG视讯, 2016, 60(): 184-191.

    75. [75]

      WACKERNAGEL M, ONISTO L, BELLO P, CALLEJAS LINARES A, SUSANA LÓPEZ FALFÁN I, MÉNDEZ GARCÍA J, ISABEL SUÁREZ GUERRERO A, GUADALUPE SUÁREZ GUERRERO M.  National natural capital accounting with the ecological footprint concept[J]. Ecological Economics, 1999, 29(3): 375-390. doi:

    76. [76]

      田彦军, 郝晋珉, 韩亮, 田志强.  县域土地利用程度评估模型构建及应用研究[J]. 农业工程学报, 2003, 19(6): 293-297. doi:
      TIAN Y J, HAO J M, HAN L, TIAN Z Q.  Application and modeling of land use degree evaluation-models on county regional scale[J]. Transactions of the CSAE, 2003, 19(6): 293-297. doi:

    77. [77]

      DEVRIES B, DECUYPER M, VERBESSELT J, ZEILEIS A, HEROLD M, JOSEPH S.  Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and landsat time Series[J]. Remote Sensing of Environment, 2015, 169(): 320-334. doi:

    78. [78]

      WESSELS K J, PRINCE S D, MALHERBE J, SMALL J, FROST P E, VANZYL D.  Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in south Africa[J]. Journal of Arid Environments, 2007, 68(2): 271-297. doi:

    1. [1]

      陈宣郭海林陈静波刘建秀 . 结缕草属植物两种耐盐评价方法的比较. 草业科学, doi:  BG视讯

    2. [2]

      刘冠志甄江红刘果厚李红颖刘哲荣希吉日 . 近20年元上都遗址周边土地利用变化及驱动力. 草业科学, doi:  BG视讯

    3. [3]

      高立杰侯建华安 哲马冬雪高宝嘉BG视讯 . 不同土地利用类型大型土壤动物群落结构. 草业科学,

    4. [4]

      苏芳莉赵光辉王铁良李海福李一鸣 . 不同土地利用方式下表层土壤大团聚体特征. 草业科学, doi:  BG视讯

    5. [5]

       jiyugisyucluesmoxingdetudiliyongguihuayanjiu. caoyekexue,

    6. [6]

      白力军宝音陶格涛苏金华布仁图雅万志强 . 元上都遗址土地利用及景观格局变化. 草业科学, doi: 

    7. [7]

      刘翊涵苏正安潘洪义王晓艺伍佐周涛王俊杰何周窈 . 张家口市土地利用和土壤保持功能的变化特征. 草业科学, doi: 

    8. [8]

      周 可刘 会邓 波周冀琼杨富裕张蕴薇BG视讯 . 农牧交错带土地利用方式对土壤有机碳矿化的影响. 草业科学,

    9. [9]

      刘馨秋王思明 . 长江流域的人口迁移、农业开发及土地利用方式. 草业科学,

    10. [10]

      龚月月朱新萍李典鹏郑梦竹杜婕孙涛 . 不同土地利用方式下干旱区湿地土壤活性有机碳组分特征. 草业科学, doi: 

    11. [11]

      BG视讯  jiyu3sjishudehuangmolvzhoutudiliyong/tudifubeibianhuatezhengyixinjiangbalikunxianweili. caoyekexue,

    12. [12]

      艾则孜提约麦尔·麦麦提玉素甫江·如素力拜合提尼沙·阿不都克日木何辉 . 近22年叶尔羌河-喀什噶尔河三角洲绿洲土地利用结构变化及其驱因分析. 草业科学, doi: 

    13. [13]

      刘晶张跃伟张巧明徐少君 . 土地利用方式对豫西黄土丘陵区土壤团聚体微生物生物量及群落组成的影响. 草业科学, doi:  BG视讯

    14. [14]

      王兴灵张怡颖谷丰刘泉周明华 . 华北土石山区土地利用类型对土壤有效态微量元素的影响. 草业科学, doi: 

    15. [15]

      张怡颖谷丰刘泉周明华 . 华北农牧交错带不同土地利用类型的土壤养分特征: 以张北县为例. 草业科学, doi:  BG视讯

    16. [16]

      王敏高新华陈思宇冯琦胜梁天刚 . 基于Landsat 8遥感影像的土地利用分类研究以四川省红原县安曲示范区为例. 草业科学, doi:  BG视讯

    17. [17]

      杨辰刘照辉高长宁索涛涛白文祖郑茜 . 果岭坪用质量评价的简易方法. 草业科学, doi:  BG视讯

    18. [18]

       butongzhongzhimuxumiaoqinaihanxingpingjiajiqifangfadebijiao. caoyekexue,

    19. [19]

      郭艳娥李芳李应德段廷玉 . AM真菌促进植物吸收利用磷元素的机制. 草业科学, doi:  BG视讯

    20. [20]

       gannandiqumodistudifugaichanpinjingdupingjia. caoyekexue,

  • BG视讯

    图 1  土地利用强度研究发展时间轴

    Figure 1.  Development timeline for the conceptual of land use intensity (LUI)

    表 1  土地利用强度主要评估方法和指标

    Table 1.  BG视讯 The main methods and indicators of land use intensity

    方法
    Method
    核心思想
    Key thought
    经典指标
    Typical indicator
    优点
    Advantage
    缺陷
    Disadvantage
    频率计算
    Frenquency
    method
    评价某个时间周期内,某类干扰活动的频次
    The frequency of a certain interference activity over a time period
    耕作频率 Tillage frequen-cy, 复种指数 Multi-cropping index, 割草频率 Mowing frequency, 砍伐频率 Cutting frequency, 等etc 便于定量化,易于遥感监测和估算
    Easy for quantifying and remote sensing monitoring and estimation
    不考虑土地的投入和产出量,仅衡量相对简单的人类活动的频次和干扰面积比例 Land input and output are not considered, only the frequency and disturb-ance area ratio of simple human activities are measured
    面积比例
    Area proportion
    method
    年收获面积占区域种植面积的比例
    The proportion of the annual harvested area to the planted area
    收获面积比例Yield area ratio
    投入-产出
    Input-output
    method
    根据不同的土地管理目标,综合考虑投入因素对土地产出的影响
    According to land management objectives, considering the compreh-ensive impact of input factors on output
    土地集约利用度Intensive level of land use
    (劳动力集约 Labor intens-ive, 投入集约Input intensive), τ因子τ-factor, 技术效率TE
    1.将土地管理方式对产出的影响纳入计算
    Including the impact of land management on output
    2.方法和指标系统相对完善,可根据不同的土地管理目的选择不同的变量和方法
    The method and index system are relatively complete, and different variables and methods can be selected according to land management purposes
    1.需要搜集、调研大量的社会经济统计数据
    A large number of socio-economic statistics need to be collected and investigated
    2.比较不同气候区的土地利用强度时,需要考虑气候对产出的影响
    The effect of climate on output needs to be considered when comparing the intensity of land use in different climatic zones,
    传统产出强度
    Traditional
    output intensity
    method
    单位面积土地产出Land output per hectare 粮食单产Grain yield per hectare,
    地均产值Output per hectare
    无需考虑人为投入影响Human inputs is not required 无法进行不同气候区, 不同土地利用类型的土地利用强度比较
    The intensity differences between different climatic zones and different land use types cannot to be compared
    HANPP 人为干扰引起的NPP的变化,由NPP潜力, 实际NPP以及收获后生态系统剩余NPP计算得出。
    Changes in NPP caused by human disturbance, calculated from NPP potential, actual NPP, and NPP residual after harvested
    HANPP 1.充分考虑了生态系统的人为扰动机制,实现了人为干扰和自然因素的区分
    The human disturbance mechanism of the ecosystem is fully considered, and the distinction between human disturbance and natural factors is realized
    2.可比较不同气候区不同土地利用类型的利用强度 The intensity of different land use types in different climatic zones can be compared
    仅采用生产力产出指标(NPP)评价土地利用强度,忽略人为干扰对其他产出要素的影响
    Only productivity output index (NPP) is used to evaluate land use intensity, ignoring the impact of human interference on other output factors
    下载: 导出CSV

    表 2  土地利用强度指标对不同生态系统人为干扰因素的表征

    Table 2.  Whether the LUI indicators can represent the human disturbance in different ecosystems

    生态系统Ecosystem主要人为干扰/
    管理措施
    Main human
    interference/
    management
    measures
    频率指标Frequency index投入强度
    Input intensity
    产出强度Output intensity投入-产出
    效率指标
    Input-output
    efficiency index
    强度指标可否定量描述
    人为干扰及影响
    Whether human activity and influence could be represented by intensity index or not
    农业用地Cropland 熟制 Cropping system,
    灌溉 Irrigation,
    施肥 Fertilization,
    除草 Weeding,
    杀虫 Deinsectization,
    收获 Harvest
    复种指数Multicropping index,
    灌溉频率Irrigation frequency
    化肥
    Fertilizer input,
    机械Machinery input,
    灌溉 Irrigation input,
    农药
    Pesticide input,
    劳动力投入指数
    Labor input index
    粮食单产
    Grain yield per hectare,
    人均产出Output per head, HANPP等
    化肥/机械/灌溉投入
    权重 Input weight of fertilizer/machinery/
    irrigation,
    τ 因子 τ-factor,
    技术效率TE
    投入 Input 是 Yes
    产出 Output 部分 Part
    投入-产出Input-output 部分 Part
    草地Grassland 轮牧 Rotation grazing,
    补播 Resowgrass,
    围栏封育 Fencing,
    自由放牧 Free grazing,
    施肥 fertilizing,
    割草 mowing,
    防火/鼠/虫等投入fire/rat/insect prevention and other inputs
    割草频率Mowing frequency 放牧强度
    Grazing intensity, 肥料
    Fertilizer input index,
    农药投入指数 pesticide input index
    生产力
    Productivity,
    畜产品产出 Livestock production, HANPP
    缺乏 Deficiency 投入 Input 部分 Part
    产出 Output 部分 Part
    投入-产出 Input-output 否 No
    林地 woodland 毁林 Deforestation,
    人工种植 Planting,
    天然更新
    Natural regeneration,
    灌溉 Irrigation,
    农药 Pesticide,
    皆伐 Clear-cutting,
    间伐 Thinning
    砍伐频率Cutting frequency 缺乏 Deficiency 木材量 Wood production,
    固碳量Carbon sequestration, HANPP等
    缺乏 Deficiency 投入 Input 是 Yes
    产出 Output 否 No
    投入-产出Input-output 否 No
    下载: 导出CSV
    BG视讯
  • <tfoot id='t57c5'></tfoot>

          <legend id='t57c5'><style id='t57c5'><dir id='t57c5'><q id='t57c5'></q></dir></style></legend>
          <i id='t57c5'><tr id='t57c5'><dt id='t57c5'><q id='t57c5'><span id='t57c5'><b id='t57c5'><form id='t57c5'><ins id='t57c5'></ins><ul id='t57c5'></ul><sub id='t57c5'></sub></form><legend id='t57c5'></legend><bdo id='t57c5'><pre id='t57c5'><center id='t57c5'></center></pre></bdo></b><th id='t57c5'></th></span></q></dt></tr></i><div id='t57c5'><tfoot id='t57c5'></tfoot><dl id='t57c5'><fieldset id='t57c5'></fieldset></dl></div>

              <bdo id='t57c5'></bdo><ul id='t57c5'></ul>

              1. 加载中
              2. 图(1)表(2)
                计量
                • PDF下载量:  8
                • 文章访问数:  835
                • HTML全文浏览量:  158
                文章相关
                • 通讯作者:  左丽君, zuolj@radi.ac.cn
                • 收稿日期:  2019-02-18
                • 网络出版日期:  2020-06-20
                通讯作者: 陈斌,
                • 1. 

                  BG视讯shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

                1. 本站搜索
                2. 百度学术搜索
                3. 万方数据库搜索
                4. CNKI搜索

                /

                返回文章
                BG视讯