BG视讯

欢迎访问 草业科学,今天是

tuihuatidushangdianxibeigaoshancaodianzhiwuqunluodebuchangshengzhangnengli

赵鸿怡 张勇 崔媛 郑秋竹 田昆 黄晓霞

引用本文: 赵鸿怡,张勇,崔媛,郑秋竹,田昆,黄晓霞. 退化梯度上滇西北高山草甸植物群落的补偿生长能力. 草业科学, 2020, 37(6): 1025-1034 doi: 10.11829/j.issn.1001-0629.2019-0526 shu
Citation:  ZHAO H Y, ZHANG Y, CUI Y, ZHENG Q Z, TIAN K, HUANG X X. Study on the compensatory growth of alpine meadows along a degradation gradient in northwestern Yunnan Province. Pratacultural Science, 2020, 37(6): 1025-1034 doi: 10.11829/j.issn.1001-0629.2019-0526 shu

退化梯度上滇西北高山草甸植物群落的补偿生长能力

    作者简介: 赵鸿怡(1993-),女,山东青岛人,在读硕士生,研究方向为草地生态学。E-mail: ;
    通讯作者: 张勇,
  • 基金项目:BG视讯 国家自然科学基金项目(31901394、31560181);云南省科技厅科技计划项目(2018FD046)

摘要: 为探究退化梯度上滇西北高山草甸植物群落补偿生长能力及其维持机制,本研究于2018年7月–9月在滇西北的3个草甸退化梯度[重度退化(heavy degradation, HD)、中度退化(medium degradation, MD)、无退化对照(control, CK)]上开展原位刈割试验以分析草甸植物的补偿生长能力,同时采集、分析相应土壤样品的理化性质用于分析草甸植物补偿生长能力的维持机制。结果表明: 1) 随退化程度增加,草甸植物群落总盖度、平均高度及地上生物量逐渐降低;2) 随退化程度增加,土壤容重、土壤含水率、平均粒径、总氮含量及土壤有机碳含量逐渐降低;土壤pH、速效氮含量在退化梯度间没有显著差异(P > 0.05),土壤有效磷含量的排序为MD > CK > HD;3) 各退化梯度的草甸植物群落均发生了超补偿生长,且超补偿生长能力在退化梯度间没有显著差异(P > 0.05)。禾本科和杂类草植物的超补偿生长能力在退化梯度间没有显著差异,莎草科植物的超补偿生长能力排序为HD > MD > CK;4) 相较于禾本科和莎草科,杂类草的超补偿生长能力受土壤理化性质的影响更小;5) 相较于CK和MD样地,土壤理化性质对HD样地植物群落超补偿生长能力的影响程度更深。本研究表明,退化虽可导致草甸植物群落和土壤理化性质发生明显的负面变化,但当土壤理化性质的变化尚不足以限制植物群落的超补偿生长能力时,植物群落的超补偿生长能力可维持不变。

English

    1. [1]

      BELSKY A J.  Does herbivory benefit plants? A review of the evidence[J]. American Naturalist, 1986, 127(6): 870-892. doi:

    2. [2]

      NIU K C, ZHANG S T, ZHAO B B, DU G Z.  Linking grazing response of species abundance to functional traits in the Tibetan alpine meadow[J]. Plant and Soil, 2010, 330(1/2): 215-223.

    3. [3]

      ELLISON L.  Influence of grazing on plant succession of Rangelands[J]. Botanical Review, 1960, 26(1): 1-78. doi:

    4. [4]

      MCNAUGHTON S J.  Grazing as an optimization process: Grass-ungulate relationships in the Serengeti[J]. American Naturalist, 1979, 113(5): 691-703. doi:

    5. [5]

      DYER M I, DEANGELIS D L, POST W M.  A model of herbivore feedback on plant productivity[J]. Mathematical Biosciences, 1986, 79(2): 171-184. doi:

    6. [6]

      BG视讯 briske d d. developmental morphology and physiology of grasses. // heitschmidt r k, stuth j w. (eds) grazing management: an ecological perspective. portland: timber press, 1991: 85-108.

    7. [7]

      周晓松, 朱志红, 李英年, 袁芙蓉, 樊瑞俭.  刈割、施肥和浇水处理下高寒矮嵩草草甸补偿机制[J]. 兰州大学学报(自然科学版), 2011, 47(3): 50-57.
      ZHOU X S, ZHU Z H, LI Y N, YUAN F R, FAN R J.  Community compensatory mechanism under clipping, fertilizing and watering treatment in alpine meadow[J]. Journal of Lanzhou University (Natural Sciences), 2011, 47(3): 50-57.

    8. [8]

      许曼丽, 朱志红, 李英年, 周晓松, 李晓刚.  高寒矮嵩草草甸4种主要植物补偿生长变化与耐牧性比较研究[J]. 中国农学通报, 2012, 28(20): 7-16.
      XU M L, ZHU Z H, LI Y N, ZHOU X S, LI X G.  Compensatory growth and grazing-tolerance of 4 major plant species in alpine Kobresia humilis meadow[J]. Chinese Agriculture Science BulletinBG视讯, 2012, 28(20): 7-16.

    9. [9]

      ZONG N, SHI P L.  Nitrogen addition stimulated compensatory growth responses to clipping defoliation in a Northern Tibetan alpine meadow[J]. Grassland Science, 2019, 65(1): 60-68.

    10. [10]

      张宪洲, 杨永平, 朴世龙, 包维楷, 汪诗平, 王根绪, 孙航, 罗天祥, 张扬建, 石培礼, 梁尔源, 沈妙根, 王景升, 高清竹, 张镱锂, 欧阳华.  青藏高原生态变化[J]. 科学通报, 2015, 60(32): 3048-3056. doi:
      ZHANG X Z, YANG Y P, PIAO S L, BAO W K, WANG S P, WANG X G, SUN H, LUO T X, ZHANG Y J, SHI P L, LIANG E Y, SHEN M G, WANG J S, GAO Q Z, ZHANG Y L, OUYANG H.  Ecological change on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3048-3056. doi:

    11. [11]

      尚占环, 董全民, 施建军, 周华坤, 董世魁, 邵新庆, 李世雄, 王彦龙, 马玉寿, 丁路明, 曹广民, 龙瑞军.  青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展: 兼论三江源生态恢复问题[J]. 草地学报, 2018, 26(1): 1-21.
      SHANG Z H, DONG Q M, SHI J J, ZHOU H K, DONG S K, SHAO X Q, LI S X, WANG Y L, MA Y T, DING L M, CAO G M, LONG R J.  Research progress in recent ten years of ecological restoration for ‘black soil land’ degraded grassland on Tibetan Plateau: Concurrently discuss of ecological restoration in Sangjiangyuan Region[J]. Acta Agrestia Sinica, 2018, 26(1): 1-21.

    12. [12]

      TANG L, DONG S K, SHERMAN R, LIU S L, LIU Q R, WANG X X, SU X K, ZHANG Y, LI Y Y, WU Y, ZHAO H D, ZHAO C, WU X Y.  Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai-Tibet Plateau[J]. The Rangeland Journal, 2015, 37(1): 107-115. doi:

    13. [13]

      WANG X X, DONG S K, YANG B, LI Y Y, SU X K.  The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters[J]. Environmental Monitoring and Assessment, 2017, 186(10): 6903-6917.

    14. [14]

      周华坤, 赵新全, 周立, 刘伟, 李英年, 唐艳鸿.  青藏高原高寒草甸的植被退化与土壤退化特征研究[J]. 草业学报, 2005, 14(3): 31-40.
      ZHOU H K, ZHAO X Q, ZHOU L, LIU W, LI Y N, TANG Y H.  A study on correlations between vegetation degradation and soil degradation in the ‘Alpine Meadow’ of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2005, 14(3): 31-40.

    15. [15]

      LIU S B, SCHLEUSS P, KUZYAKOV Y.  Carbon and nitrogen loss from soil depend on degradation of Tibetan Kobresia pastures[J]. Land Degradation & Development, 2017, 28(): 1253-1262.

    16. [16]

      WANG X X, DONG S K, GAO Q Z, ZHOU H K, LIU S L, SU X K, LI Y Y.  Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China[J]. Soil Biology & Biochemistry, 2014, 76(): 140-142.

    17. [17]

      ZHANG Y, DONG S K, GAO Q Z, LIU S L, GANJURJAV H, WANG X X, SU X K, WU X Y.  Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes[J]. Scientific Reports, 2017, 7(): 43077-. doi:

    18. [18]

      张燕妮. 滇西北优先保护植物群落类型的初步研究. 昆明: 云南大学硕士学位论文, 2013.
      BG视讯 ZHANG Y N. Preliminary evaluation of the priority of plant communities for conservation in northwest Yunnan. Master Thesis. Kunming: Yunnan University, 2013.

    19. [19]

      张镱锂, 李炳元, 郑度.  论青藏高原范围与面积[J]. 地理研究, 2002, 21(1): 1-8.
      ZHANG Y I, LI B Y, ZHENG D.  A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical ResearchBG视讯, 2002, 21(1): 1-8.

    20. [20]

      薛达元, 武建勇.  长江中上游生物多样性与保护研究: 以滇西北为例[J]. 环境保护, 2016, 44(15): 31-35.
      XUE D Y, WU J Y.  Biodiversity and conservation in the upper and middle reaches of the Yangtze River: A report from the northwest of Yunnan Province[J]. Environmental ProtectionBG视讯, 2016, 44(15): 31-35.

    21. [21]

      MYERS N, MITTERMEIER R A, MITTERMEIER C G, FONSECA G A B DA, KENT J.  Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(): 853-858. doi:

    22. [22]

      尹海燕, 初晓辉, 单贵莲, 谢勇, 梅文君, 陈功, 袁福锦.  不同大狼毒覆盖度退化亚高山草甸群落结构及物种多样性研究[J]. 云南农业大学学报(自然科学版), 2019, 34(3): 473-478.
      YIN H Y, CHU X H, SHAN G L, XIE Y, MEI W J, CHEN G, YUAN F J.  Study on the community structure and species diversity of degraded subalpine meadow with different coverages of Euphorbia jolkinii[J]. Journal of Yunnan Agricultural University (Natural Science Edition)BG视讯, 2019, 34(3): 473-478.

    23. [23]

      刘钟龄. 中国草地资源现状与区域分析. 北京: 科学出版社, 2017.
      BG视讯 LIU Z L. Current Situation and Regional Analysis of Grassland Resources in China. Beijing: Science Press, 2017.

    24. [24]

      任健, 墨继光, 张树斌.  草地共管在滇西北退化草地治理中的实践[J]. 云南农业大学学报(社会科学), 2010, 4(4): 19-23.
      REN J, MO J G, ZHANG S B.  Practices of co-management on degraded sub-alpine rangeland in northwest of Yunnan Province[J]. Journal of Yunnan Agricultural University (Social Science Edition)BG视讯, 2010, 4(4): 19-23.

    25. [25]

      单贵莲, 初晓辉, 陈功, 谢勇, 袁福锦, 尹海燕.  滇西北亚高山草甸土壤养分及酶活性对放牧和封育的响应[J]. 中国草地学报, 2018, 40(4): 82-87.
      SHAN G L, CHU X H, CHEN G, XIE Y, YUAN F J, YIN H Y.  The response of soil nutrients and enzyme activities to grazing and fencing in sub-alpine meadow of northwest Yunnan[J]. Grassland of ChinaBG视讯, 2018, 40(4): 82-87.

    26. [26]

      吕曾哲舟, 黄晓霞, 王琇瑜, 和克俭, 丁佼, 孙晓能.  玉龙雪山牦牛坪高山草甸的干扰格局分析[J]. 自然资源学报, 2019, 34(6): 1223-1231.
      LYU Z Z Z, HUANG X X, WANG X Y, HE K J, DING J, SUN X N.  Disturbance pattern of alpine meadow in Yak Meadow Park, Jade Dragon Mountain[J]. Journal of Natural Resources, 2019, 34(6): 1223-1231.

    27. [27]

      LEHNERT L W, WESCHE K, TRACHTE K, REUDENBACH C, BENDIX J.  Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures[J]. Scientific Reports, 2016, 6(1): 24367-. doi:

    28. [28]

      张勇. 旅游踩踏对香格里拉高寒草甸植物群落的短期影响. 昆明: 云南大学硕士学位论文, 2013
      BG视讯 ZHANG Y. Short-term impacts of tourism trampling on Shangri-La alpine meadow vegetation. Master Thesis. Kunming: Yunnan University, 2013.

    29. [29]

      黄晓霞, 张勇, 和克俭, 丁佼, 赵文娟.  高寒草甸对旅游踩踏的抗干扰响应能力[J]. 草业学报, 2014, 23(2): 333-339.
      HUANG X X, ZHANG Y, HE K J, DING J, ZHAO W J.  Tolerance of alpine meadows to human trampling[J]. Acta Prataculturae SinicaBG视讯, 2014, 23(2): 333-339.

    30. [30]

      刘振亚, 张晓宁, 李丽萍, 王行, 张贇, 孙梅, 肖德荣.  大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响[J]. 生态学报, 2017, 37(23): 7821-7832.
      LIU Z Y, ZHANG X N, LI L P, WANG H, ZHANG Y, SUN M, XIAO D R.  Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan[J]. Acta Ecologica Sinica, 2017, 37(23): 7821-7832.

    31. [31]

      王君, 沙丽清, 李检舟, 冯志立.  云南香格里拉地区亚高山草甸不同放牧管理方式下的碳排放[J]. 生态学报, 2008, 28(8): 3574-3583. doi:
      WANG J, SHA L Q, LI J Z, FENG Z L.  CO2 efflux in subalpine meadows under different grazing management in Shangri-La, Yunnan[J]. Acta Ecologica Sinica, 2008, 28(8): 3574-3583. doi:

    32. [32]

      鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000.
      BAO S D. Soil Agrochemical Analysis. Third Edition. Beijing: China Agricultural Press, 2000.

    33. [33]

      董世魁, 温璐, 李媛媛, 王学霞. 青藏高原退化高寒草地生态恢复的植物 – 土壤界面过程. 北京: 科学出版社, 2015.
      DONG S K, WEN L, LI Y Y, WANG X X. Soil Interface Process – Plant Alpine Grassland Ecological Restoration of Degraded Qinghai-Tibet Plateau. Beijing: Science Press, 2015.

    34. [34]

      HARRIS R B.  Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes[J]. Journal of Arid Environments, 2010, 74(1): 1-12. doi:

    35. [35]

      周宇庭, 付刚, 沈振西, 张宪洲, 武建双, 李云龙, 杨鹏万.  藏北典型高寒草甸地上生物量的遥感估算模型[J]. 草业学报, 2013, 22(1): 123-132.
      ZHOU Y T, FU G, SHEN Z X, ZHANG X Z, WU J S, LI Y L, YANG P W.  Estimation model of aboveground biomass in the Northern Tibet Plateau based on remote sensing date[J]. Acta Ecologica SinicaBG视讯, 2013, 22(1): 123-132.

    36. [36]

      王福山, 何永涛, 石培礼, 牛犇, 张宪洲, 徐兴良.  狼毒对西藏高原高寒草甸退化的指示作用[J]. 应用与环境生物学报, 2016, 22(4): 567-572.
      WANG F S, HE Y T, SHI P L, NIU B, ZHANG X Z, XU X L.  Stellera chamaejasme as an indicator for alpine meadow degradation on the Tibetan Plateau[J]. Chinese Journal of Applied & Environmental BiologyBG视讯, 2016, 22(4): 567-572.

    37. [37]

      马玉寿, 朗白宁, 王启基.  “黑土型”退化草地研究工作的回顾与展望[J]. 草业科学, 1999, 16(2): 5-9.
      MA Y S, LANG B N, WANG Q J.  Review and prospect of the study on ‘black soil type’ deteriorated grassland[J]. Pratacultural Science, 1999, 16(2): 5-9.

    38. [38]

      蔡晓布, 张永青, 邵伟.  不同退化程度高寒草原土壤肥力变化特征[J]. 生态学报, 2008, 28(3): 1110-1118.
      CAI X B, ZHANG Y Q, SHAO W.  Characteristics of soil fertility in alpine steppes at different degradation grades[J]. Acta Ecologica Sinica, 2008, 28(3): 1110-1118.

    39. [39]

      王学霞, 董世魁, 李媛媛, 李小艳, 温璐, 吴娱.  三江源区草地退化与人工恢复对土壤理化性状的影响[J]. 水土保持学报, 2012, 26(4): 113-122.
      WANG X X, DONG S K, LI Y Y, LI X Y, WEN L, WU Y.  Effects of grassland degradation and artificial restoration on soil physicochemical properties in Three-river Headwater[J]. Journal of Soil and Water ConservationBG视讯, 2012, 26(4): 113-122.

    40. [40]

      FAY P A, PROBER S M, HARPOLE W S, KNOPS J M H, BAKKER J D, BORER E T, LIND E M, MACDOUGALL A S, SEABLOOM E W, WRAGG P D, ADLLER P B, BLUMENTHAL D M, BUCKLEY Y M, CHU C J, CLELAND E E, COLLINS S L, DAVIES K F, DU G Z, FENG X H, FIRN J, GRUNER D S, HAGENAH N, HAUTIER Y, HECKMAN R W, JIN V L, KIRKMAN K P, KLEIN J, LADWIG L M, LI Q, MCCULLEY R L, MELBOURNE B A, MITCHELL C E, MOORE J L, MORGAN J W, RISCH A C, SCHUTZ M, STEVENS C J, WEDIN D A, YANG L H.  Grassland productivity limited by multiple nutrients[J]. Nature Plants, 2015, 1(7): 15080-. doi:

    41. [41]

      益西措姆, 许岳飞, 付娟娟, 巴桑吉巴, 尼布, 呼天明, 苗彦军.  放牧强度对西藏高寒草甸植被群落和土壤理化性质的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 42(6): 27-33.
      Yiximucuo, XU Y F, FU J J, Basangjiba, Nibu, HU T M, MIAO Y J.  Effects of grazing intensity on vegetation community and soil physicochemical properties of alpine meadow in Tibet[J]. Journal of Northwest A&F University (Natural Science Edition)BG视讯, 2019, 42(6): 27-33.

    42. [42]

      赵新全. 高寒草甸生态系统与全球变化. 北京: 科学出版社, 2009.
      ZHAO X Q. Alpine Meadow Ecosystems and Global Changes. Beijing: Science Press, 2009.

    43. [43]

      王向涛. 放牧强度对高寒草甸植被和土壤理化性质的影响. 兰州: 兰州大学硕士学位论文, 2010.
      BG视讯 WANG X T. Effect of different grazing intensities on vegetation and soil physical and chemical character in alpine meadow. Master Thesis. Lanzhou: Lanzhou University, 2010.

    44. [44]

      赵娜, 赵新全, 赵亮, 徐世晓, 邹小艳.  植物功能性状对放牧干扰的响应[J]. 生态学杂志, 2016, 35(7): 1916-1926.
      ZHAO N, ZHAO X Q, ZHAO L, XU S X, ZOU X Y.  Progress in researches of response of plant functional traits to grazing disturbance[J]. Chinese Journal of Ecology, 2016, 35(7): 1916-1926.

    45. [45]

      温璐, 董世魁, 朱磊, 施建军, 刘德梅, 王彦龙, 马玉寿.  环境因子和干扰强度对高寒草甸植物多样性空间分异的影响[J]. 生态学报, 2001, 31(7): 1844-1854.
      WEN L, DONG S K, ZHU L, SHI J J, LIU D M, WANG Y L, MA Y T.  The effect of natural factors and disturbance intensity on spacial heterogeneity of plant diversity in alpine meadow[J]. Acta Ecologica Sinica, 2001, 31(7): 1844-1854.

    46. [46]

      WANG H, DU G, REN J.  The impacts of population density and fertilization on compensatory responses of Elymus nutans to mowing[J]. Acta Phytoecologica Sinica, 2003, 27(4): 477-483.

    47. [47]

      王丽华, 刘尉, 王金牛, 干友民, 吴彦.  不同刈割强度下草地群落、层片及物种的补偿性生长[J]. 草业学报, 2015, 24(6): 35-42.
      WANG L H, LIU W, WANG J N, GAN Y M, WU Y.  The compensatory growth of plant community, synusia and species under different clipping intensity[J]. Acta Prataculturae Sinica, 2015, 24(6): 35-42.

    48. [48]

      牛钰杰, 杨思维, 王贵珍, 刘丽, 杜国祯, 花立民.  放牧强度对高寒草甸土壤理化性状和植物功能群的影响[J]. 生态学报, 2018, 38(14): 5006-5016.
      NIU Y J, YANG S W, WANG G Z, LIU L, DU G Z, HUA L M.  Effects of grazing disturbance on soil properties and plant functional groups and their relationships in an alpine meadow on the Tibetan Plateau[J]. Acta Ecologica Sinica, 2018, 38(14): 5006-5016.

    1. [1]

      孙毅闫兴富周立彪苗迎权 . 光强和刈割处理对柠条幼苗补偿生长的影响. 草业科学, 2017, 11(1): 75-83. doi:  BG视讯

    2. [2]

      段中华全小龙乔有明史惠兰裴海昆郑元铭 . 植物与土壤中醇类化合物对高寒草甸退化指示作用初探. 草业科学, 2018, 12(5): 969-977. doi: 

    3. [3]

      孙毅闫帮国何光熊张梦寅和润莲史亮涛 . 水分和养分添加对扭黄茅刈割后补偿作用的影响. 草业科学, 2019, 36(1): 200-209. doi: 

    4. [4]

      李成阳赖炽敏彭飞薛娴尤全刚张文娟刘斐耀 . 青藏高原北麓河流域不同退化程度高寒草甸生产力和群落结构特征. 草业科学, 2019, 36(4): 1044-1052. doi:  BG视讯

    5. [5]

      马周文王宏于应文常生华周青平侯扶江 . 甘肃马鹿冬季牧场牧草再生性对刈割的短期响应. 草业科学, 2018, 12(1): 157-164. doi: 

    6. [6]

      罗久富周金星赵文霞董林水郑景明 . 围栏措施对青藏高原高寒草甸群落结构和稳定性的影响. 草业科学, 2017, 11(3): 565-574. doi:  BG视讯

    7. [7]

      陈文年陈发军 . 青藏高原高山草甸群落生物量及多样性对氮素添加的响应. 草业科学, 2017, 11(5): 1082-1089. doi: 

    8. [8]

      李 强宋彦涛周道玮王敏玲陈笑莹 . 围封和放牧对退化盐碱草地 土壤碳、氮、磷储量的影响 . 草业科学, 2014, 8(10): 1811-1819. doi:  BG视讯

    9. [9]

      陈帅孙涛 . 松嫩草地不同退化阶段的土壤团聚体稳定性. 草业科学, 2017, 11(2): 217-223. doi: 

    10. [10]

       chuanxibeibutongtuihuachengdugaoshancaodianheyagaoshancaodiandezhibeitezheng. caoyekexue, 2011, 5(6): 1101-1105.

    11. [11]

      申时才David Melick??洁张付斗BG视讯 . 土大黄的分布与云南省滇西北高山草地植物物种多样性的关系. 草业科学, 2010, 4(8): 29-33.

    12. [12]

      李永进代微然杨春勐任健毕玉芬 . 封育和添加牛粪对退化亚高山草甸土壤恢复的影响. 草业科学, 2016, 10(8): 1486-1491. doi: 

    13. [13]

      冯忠心周娟娟王欣荣张利平史 静王生文陈本建BG视讯 . 补播和划破草皮对退化亚高山草甸植被恢复的影响. 草业科学, 2013, 7(9): 1313-1319.

    14. [14]

      姚玉璧张秀云段永良 . 亚高山草甸类草地牧草生长发育与气象条件的关系研究. 草业科学, 2009, 3(3): 43-47.

    15. [15]

      马银山徐琳范海鹏常立江周睿张世挺 . 刈割频度和刈割时间对冷地早熟禾生长的影响. 草业科学, 2016, 10(6): 1094-1101. doi:  BG视讯

    16. [16]

      袁福锦黄梅芬廖祥龙吴文荣余梅李友薛世明王馨李继中 . 滇西北高寒地区牧草混播组合的筛选. 草业科学, 2015, 9(12): 2078-2082. doi: 

    17. [17]

      BG视讯  donglingshanyagaoshancaodiandeshuliangfenxi. caoyekexue, 2009, 3(12): 13-18.

    18. [18]

      姚 幸韩建民 . 西北牧区经济发展与草地退化的关系. 草业科学, 2015, 9(4): 628-. doi:  BG视讯

    19. [19]

       yigecishuduizisuihuaishengzhanghedanlinjiahanliangdeyingxiang. caoyekexue, 2011, 5(3): 431-435.

    20. [20]

      BG视讯  yigeduiganreheguhaishisudancaoshengzhangdeyingxiang. caoyekexue, 2012, 6(11): 1765-1770.

  • BG视讯

    图 1  样地示意图

    Figure 1.  Illustration of a sampling site

    图 2  BG视讯 退化梯度上土壤理化性质变化特征

    Figure 2.  Soil physical and chemical properties among different degradation levels

    图 3  退化梯度上植物群落及功能群植物的补偿生长能力

    Figure 3.  Compensation indices of the plant community and functional groups among different degradation levels

    图 4  草甸植物群落补偿生长能力与土壤理化性质的关系

    Figure 4.  BG视讯 Relationship between compensatory growth strength and soil physicochemical properties

    表 1  退化梯度上刈割样方和对照样方草甸植物群落概况

    Table 1.  General information on the communities between mowing and control treatments along the degradation gradient

    退化梯度     
    Degradation level     
    样地
    Plot
    总盖度
    Total cover/%
    平均高度
    Average height/cm
    物种丰富度
    Species richness
    重度退化
    Heavy degradation
    M 64.33 ± 5.00c 5.92 ± 0.64c 15.11 ± 0.48b
    CK 51.44 ± 9.55c 5.66 ± 0.37c 13.78 ± 1.28b
    中度退化
    Medium degradation
    M 79.56 ± 1.09b 8.44 ± 0.25b 17.56 ± 0.29a
    CK 76.22 ± 0.95b 8.39 ± 0.05b 17.44 ± 0.48a
    对照
    Control
    M 90.89 ± 1.13a 12.03 ± 0.69a 18.44 ± 0.78a
    CK 88.56 ± 0.59a 11.07 ± 1.17a 18.11 ± 0.87a
     M代表刈割样方,CK代表对照样方;下同。同列不同小写字母表示相同指标不同处理间差异显著(P < 0.05)。
     M represents mowing quadrats, CK represents control quadrats; this is applicable for the following tables. Different lowercase letters within the same column indicate significant differences between different treatments at the 0.05 level.
    下载: 导出CSV

    表 2  刈割前退化梯度上草甸植物群落特征

    Table 2.  Characteristics of plant communities at different degradation levels before the mowing experiment

    群落指标
    Indices of plant community
    重度退化
    Heavy degradation (HD)
    中度退化
    Medium degradation (MD)
    对照
    Control (CK)
    总盖度 Total cover/% 57.89 ± 7.28c 77.89 ± 0.97b 89.73 ± 0.86a
    平均高度 Average height/cm 5.79 ± 0.51c 8.42 ± 0.15b 11.55 ± 0.93a
    物种丰富度 Species richness 14.45 ± 0.88b 17.50 ± 0.39a 18.28 ± 0.83a
    地上生物量 Aboveground biomass/(g·m–2) 117.32 ± 12.84c 163.14 ± 9.46b 236.93 ± 22.93a
     同行不同小写字母表示相同指标不同处理间差异显著(P < 0.05)。
     Different lowercase letters within the same row indicate significant difference between different treatments at the 0.05 level.
    下载: 导出CSV
    BG视讯
  • <tr id='880gr'><strong id='880gr'></strong><small id='880gr'></small><button id='880gr'></button><li id='880gr'><noscript id='880gr'><big id='880gr'></big><dt id='880gr'></dt></noscript></li></tr><ol id='880gr'><option id='880gr'><table id='880gr'><blockquote id='880gr'><tbody id='880gr'></tbody></blockquote></table></option></ol><u id='880gr'></u><kbd id='880gr'><kbd id='880gr'></kbd></kbd>

      <code id='880gr'><strong id='880gr'></strong></code>

      <fieldset id='880gr'></fieldset>
            <span id='880gr'></span>

                <ins id='880gr'></ins>
                    <acronym id='880gr'><em id='880gr'></em><td id='880gr'><div id='880gr'></div></td></acronym><address id='880gr'><big id='880gr'><big id='880gr'></big><legend id='880gr'></legend></big></address>

                      <i id='880gr'><div id='880gr'><ins id='880gr'></ins></div></i>
                      <i id='880gr'></i>
                        • <dl id='880gr'></dl>
                        • 加载中
                        • 图(4)表(2)
                          计量
                          • PDF下载量:  28
                          • 文章访问数:  818
                          • HTML全文浏览量:  202
                          文章相关
                          • 通讯作者:  张勇,
                          • 收稿日期:  2019-10-24
                          • 网络出版日期:  2020-04-30
                          • 刊出日期:  2020-06-01
                          通讯作者: 陈斌,
                          • 1. 

                            BG视讯shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

                          1. 本站搜索
                          2. 百度学术搜索
                          3. 万方数据库搜索
                          4. CNKI搜索

                          /

                          返回文章
                          BG视讯