欢迎访问 草业科学,今天是


宋瑶瑶 曾鹏 蒋景龙 焦成瑾 徐全乐

引用本文: 宋瑶瑶,曾鹏,蒋景龙,焦成瑾,徐全乐. 山黧豆β-ODAP与硫代谢关系研究进展. 草业科学, 2020, 37(5): 963-974 doi: 10.11829/j.issn.1001-0629.2019-0336 shu
Citation:  SONG Y Y, ZENG P, JIANG J L, JIAO C J, XU Q L. Research progress on β-ODAP and sulfur metabolism of . Pratacultural Science, 2020, 37(5): 963-974 doi: 10.11829/j.issn.1001-0629.2019-0336 shu


    作者简介: 宋瑶瑶(1994-),女,山西孝义人,在读硕士生,主要从事山黧豆抗逆分子生物学研究。E-mail: ;
    通讯作者: 徐全乐,
摘要: 山黧豆(Lathyrus sativus)是干旱、半干旱地区和贫困地区的重要饲料和粮食作物。长期以来,对于其内源毒素非蛋白氨基酸β-N-草酰-L-α, β-二氨基丙酸(β-N-oxalyl-L-α, β-diaminopropionicacid, β-ODAP)的过度强调导致山黧豆优良的农艺性状和在膳食平衡中的作用遭受无视。随着全球气候变化,山黧豆优良的综合抗逆性重新引起了科学家的正视。本文根据山黧豆作为传统有毒作物的定位,对其β-ODAP代谢与硫代谢以及抗旱性关系的研究进行了综述,并指出含硫营养的改善是山黧豆育种的重要方向。


    1. [1]

      LAMBEIN F, TRAVELLA S, KUO Y H, MONTAGU M V, HEIJDE M.  Grass pea (Lathyrus sativus L.): Orphan crop, nutraceutical or just plain food?[J]. Planta, 019, 250(3): 821-838.

    2. [2]

      蒋景龙, 李丽, 曹小勇, 杨培君, 秦公伟.  山黧豆抗逆性研究进展[J]. 西北植物学报, 2013, 33(10): 2141-2146. doi:
      JIANG J L, LI L, CAO X Y, YANG P J, QIN G W.  Advancement in research on stress resistance of grass pea[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(10): 2141-2146. doi:

    3. [3]

      HANBURY C D, WHITE C L, MULLAN B P, SIDDIQUE K H M.  A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed[J]. Animal Feed Science and Technology, 2000, 87(1/2): 1-27.

    4. [4]

      SPENCER P S, ROY D N, LUDOLPH A, HUGON J, SCHAUMBURG H H.  Lathyrism: Evidence for role of the neuroexcitatory amino acid BOOA[J]. The Lancet, 1986, 2(): 1066-1067.

    5. [5]

      YAN Z Y, SPENCER P S, LI Z X, LIANG Y M, WANG Y F, WANG C Y, LI F M.  Lathyrus sativus (grass pea) and its neurotoxin ODAP[J]. Phytochemistry, 2006, 67(2): 107-121. doi:

    6. [6]

      张大伟, 邢更妹, 熊有才, 焦成瑾, 樊宪伟, 王崇英, 王亚馥, 李志孝.  山黧豆毒素ODAP的生物合成及与抗逆性关系研究进展[J]. 生态学报, 2011, 31(9): 2621-2630.
      ZHANG D W, XING G M, XIONG Y C, JIAO C J, FAN X W, WANG C Y, WANG Y F, LI Z X.  ODAP biosynthesis: Recent development and its response to plant stress in grass pea (Lathyrus sativus L.)[J]. Acta Ecologica SinicaBG视讯, 2011, 31(9): 2621-2630.

    7. [7]

      TAN R Y, XING G Y, ZHOU G M, LI F M, HU W T, LAMBEIN F, XIONG J L, ZHANG S X, KONG H Y, ZHU H, LI Z X, XIONG Y C.  Plant toxin β-ODAP activates integrin β1 and focal adhesion: A critical pathway to cause neurolathyrism[J]. Scientific Reports, 2017, 7(): 40677-. doi:

    8. [8]

      XU Q L, LIU F J, CHEN P, JEZ J M, KRISHNAN H B.  β-ODAP content in Lathyrus sativus: The integration of nitrogen and sulphur metabolism through β-cyanoalaninesynthase[J]. International Journal of Molecular Sciences, 2017, 18(3): 526-. doi:

    9. [9]

      LAMBEIN F, KUO Y H.  Prevention of neurolathyrism during drought[J]. The Lancet, 2004, 363(): 657-. doi:

    10. [10]

      LAMBEIN F, KUO Y H.  Lathyrus sativus: To eat or not to eat?[J]. CCDN News, 2013, (21): 1-2.

    11. [11]

      EMMRICH P. Genetic improvement of grass pea (LathyrussativusBG视讯) for low β-L-ODAP content. PhD Thesis. Norwich: University of East Anglia, 2017.

    12. [12]

      RAO S L N.  A look at the brighter facets of β-N-oxalyl-L-α,β-diaminopropionic acid, homoarginine and the grass pea[J]. Food and Chemical Toxicology, 2011, 49(3): 620-622. doi:

    13. [13]

      熊俊兰, 白雪, BATOOL A, 孔海燕, 谭瑞玥, 王亚馥, 李志孝, 熊友才.  山黧豆毒素β-ODAP的生态学功能及应用[J]. 应用生态学报, 2014, 25(4): 1197-1205.
      XIONG J L, BAI X, BATOOL A, KONG H Y, TAN R Y, WANG Y F, LI Z X, XIONG Y C.  Ecological function and application of toxin β-ODAP in grass pea[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1197-1205.

    14. [14]

      WANG T, GUO R X, ZHOU G, ZHOU X, KOU Z, SUI F, LI C, TANG L Y, WANG Z J.  Traditionaluses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F. H. Chen: A review[J]. Journal of Ethnopharmacology, 2016, 188(): 234-258. doi:

    15. [15]

      KOH H L, LAU A J, CHAN C Y.  Hydrophilic interaction liquid chromatography with tandem mass spectrometry for the determination of underivatized dencichine (β-N-oxalyl-L-α,β-diaminopropionic acid) in Panax medicinal plant species[J]. Rapid Communications in Mass Spectrometry, 2005, 19(10): 1237-1244. doi:

    16. [16]

      DONG T TX, CUI X M, SONG Z H, ZHAO K J, JI Z N, LO C K, TSIM K.  Chemical assessment of roots of Panax notoginseng in China: Regional and seasonal variations in its active constituents[J]. Journal of Agricultural and Food Chemistry, 2003, 51(16): 4617-4623. doi:

    17. [17]

      PUNDIR C S, BATRA B.  Determination of β-ODAP by various methods with special emphasis on biosensors: A mini-review[J]. Process Biochemistry, 2015, 50(12): 2078-2087. doi:

    18. [18]

      SUN Z X, HOU H Z, ZHOU L N, CHENG W, WANG C Y.  The cultivation consumption and research progress of Lathyrus in China[J]. CCDN NewsBG视讯, 2013, (21): 4-8.

    19. [19]

      KISLEV M E.  Origins of the cultivation of Lathyrus sativus and L. cicera (Fabaceae)[J]. Econmic Botany, 1989, 43(2): 262-270. doi:

    20. [20]

      FIKRE A, VAN MOORHEM M, AHMED S, LAMBEIN F, GHEYSEN G.  Studies on neurolathyrism in Ethiopia: Dietary habits, perception of risks and prevention[J]. Food and Chemical Toxicology, 2011, 49(3): 678-684. doi:

    21. [21]

      BRADBURY J H, LAMBEIN F.  Konzo and neurolathyrism: Similarities and dissimilarities between these crippling neurodegenerative diseases of the poor[J]. Food and Chemical Toxicology, 2011, 49(3): 537-538. doi:

    22. [22]

      焦成瑾. 山黧豆毒素β-ODAP的积累及其生物学意义的研究. 兰州: 兰州大学硕士学位论文, 2005.
      JIAO C J. Studies on accumulation of toxin β-ODAP in grass pea and its biological functions. Master Thesis. Lanzhou: Lanzhou University, 2005.

    23. [23]

      KUMAR S, BEJIGA G, AHMED S, NAKKOUL H, SARKER A.  Genetic improvement of grass pea for low neurotoxin (β-ODAP) content[J]. Food and Chemical Toxicology, 2011, 49(3): 589-600. doi:

    24. [24]

      GETAHUN H, LAMBEIN F, VANHOORNE M, VAN DER STUYFT P.  Food-aid cereals to reduce neurolathyrism related to grass-pea preparations during famine[J]. The Lancet, 2003, 362(): 1808-1810. doi:

    25. [25]

      BOUKECHA D, LAOUAR M, MEKLICHE-HANIFI L, HAREK D.  Drought tolerance in some populations of grass pea (Lathyrus sativus L.)[J]. Legume Research, 2017, 41(): 12-19.

    26. [26]

      JIANG J, SU M, CHEN Y, GAO N, JIAO C, SUN Z, LI F, WANG C.  Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment[J]. BiologiaBG视讯, 2013, 68(2): 231-240.

    27. [27]

      SHARMA D, SINGH P, SINGH S S.  β-N-oxalyl-l-α,β-Diaminopropionic acid induces wound healing by stabilizing HIF-1α and modulating associated protein expression[J]. Phytomedicine, 2018, 44(): 9-19. doi:

    28. [28]

      lan g, chen p, sun q, fang s. methods for treating hemorrhagic conditions. united states patent. 8362081 b2. 2013-01-29.

    29. [29]

      XING G, CUI K, LI J, WANG Y F, LI Z X.  Water stress and accumulation of β-N-oxalyl-l-α, β-diaminopropionic acid in grass pea (Lathyrus sativus)[J]. Journal of Agricultural Food and Chemistry, 2001, 49(1): 216-220. doi:

    30. [30]

      XIONG Y C, XING G M, LI F M, WANG S M, FAN X W, LI Z X, WANG Y F.  Abscisic acid promotes accumulation of toxin ODAP in relation to free spermine level in grass pea seedlings (Lathyrus sativus L.)[J]. Plant Physiology and BiochemistryBG视讯, 2006, 44(2/3): 161-169.

    31. [31]

      BG视讯 levitt j. responses of plants to environmental stresses. water, radiation, salt and other stresses. second edition. new york: academic press, 1980.

    32. [32]

      SCANDALIOS J G.  Oxygen stress and superoxide dismutases[J]. Plant Physiology, 1993, 101(1): 7-12. doi:

    33. [33]

      HARRIS M J, OUTLAW W H, MERTENS R, WEILER E W.  Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified (immunoassay)[J]. Proceedings of the National Academy of Sciences, 1988, 85(8): 2584-2588. doi:

    34. [34]

      JIAO C J, JIANG J L, KE L M, CHENG W, LI F M, LI Z X, WANG C Y.  Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms[J]. Food and Chemical Toxicology, 2011, 49(3): 543-549. doi:

    35. [35]

      LAMBEIN F, HAQUE R, KHAN J K, KEBEDE N, KUO Y H.  From soil to brain: Zinc deficiency increases the neurotoxicity of Lathyrus sativus and may affect the susceptibility for the motorneurone disease neurolathyrism[J]. Toxicon, 1994, 32(): 461-466. doi:

    36. [36]

      JIAO C J, XU Q L, WANG C Y, LI F M, LI Z X, WANG Y F.  Accumulation pattern of toxin β-ODAP during lifespan and effect of nutrient elements on β-ODAP content in Lathyrus sativus seedlings[J]. Journal of Agricultural Science, 2006, 144(4): 369-375. doi:

    37. [37]

      KEBEDE N, HAQUE R, KUO Y H, LAMBEIN F.  Influence of nutrient supply onthe toxicity of Lathyrus sativus[J]. Acta Botanica NeerlandicaBG视讯, 1994, 43(): 295-.

    38. [38]

      HUSSAIN M, CHOWDHURY B, HOQUE R, LAMBEIN F. Effect of water stress, salinity, interaction of cations, stage of maturity of seeds and storage devices on the ODAP content of Lathyrus sativus. // In: HAIMANOT R T, LAMBEIN F(eds.). Lathyrus and Lathyrism: A Decade of Progress. Belgium: Published by University of Ghent, 1995: 107-110.

    39. [39]

      邢更生, 周功克, 李志孝, 崔凯荣.  水分胁迫下山黧豆多胺代谢与β-N-草酰-L-α,β-二氨基丙酸积累相关性的研究[J]. 植物学报, 2000, 42(10): 1039-1044.
      XING G S, ZHOU G K, LI Z X, CUI K R.  Studies of polyamine metabolism and β-N-oxalyl-L-α, β-diaminopropionic acid accumulation in grass pea (Lathyrus sativus) under water stress[J]. Acta Botanica Sinica, 2000, 42(10): 1039-1044.

    40. [40]

      邢更生, 周功克, 李志孝.  水分胁迫下山黧豆中ABA及ODAP的积累研究[J]. 应用生态学报, 2000, 11(5): 693-698. doi:
      XING G S, ZHOU G K, LI Z X.  Accumulation of ABA and ODAP in Lathyrus sativus under water stress[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 693-698. doi:

    41. [41]

      邢更生, 周功克, 李志孝, 崔凯荣.  渗透胁迫对山黧豆幼苗H2O2及毒素积累的影响[J]. 植物生理学报, 2001, 27(1): 5-8. doi:
      XING G S, ZHOU G K, LI Z X, CUI K R.  Effects of osmotic stress onaccumulation of H2O2 and ODAP in grass pea (Lathyrus sativus)[J]. Acta Phytophysiologica Sinica, 2001, 27(1): 5-8. doi:

    42. [42]

      薛崧, 张林生, 曹让, 王明华, 汪沛洪.  水分胁迫对山黧豆萌发中蛋白质和游离氨基酸的影响[J]. 西北农林科技大学学报(自然科学版), 2001, 29(5): 79-83.
      XUE S, ZHANG L S, CAO R, WANG M H, WANG P H.  Effects of water stress on the proteins and free amino acid of the Lathyrus sativus seed during the germination[J]. Journal of Northwest A&F University (Natural Science Edition)BG视讯, 2001, 29(5): 79-83.

    43. [43]

      LIU F J, JIAO C J, BI C X, XU Q L, CHEN P, HEUBERGER A, KRISHNAN H B.  Metabolomics approach to understand mechanisms of β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) biosynthesis in grass pea (Lathyrus sativus L.)[J]. Journal of Agricultural Food and Chemistry, 2017, 65(47): 10206-10213. doi:

    44. [44]

      TALUKDAR D.  Glutathione deficiency in a grass pea (Lathyrus sativus L.) mutant reveals major reshuffle in up-stream thiol cascade and downstream antioxidant defense under arsenate stress[J]. Brazilian Journal of Botany, 2016, 39(1): 55-66. doi:

    45. [45]

      YAMAGUCHI K, TAKAHASHI Y, BERBERICH T, IMAI A, TAKAHASHI T, MICHAEL A J, KUSANO T.  A protective role for the polyamine spermine against drought stress in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2007, 352(2): 486-490. doi:

    46. [46]

      王辉, 刘晓宁, 徐全乐.  山黧豆抗氧化酶基因的克隆与表达分析[J]. 西北农林科技大学学报(自然科学版), 2019, 47(10): 1-9.
      WANG H, LIU X N, XU Q L.  Cloning and expression analysis of antioxidant enzymes in Lathyrus sativus L[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(10): 1-9.

    47. [47]

      JIAO C J, JIANG J L, LI C, KE L M, CHENG W, LI F M, LI Z X, WANG C Y.  β-ODAP accumulation could be related to low levels of superoxide anion and hydrogen peroxide in Lathyrus sativus L.[J]. Food and Chemical Toxicology, 2011, 49(3): 556-562. doi:

    48. [48]

      XIONG Y C, XING G M, GONG C M, LI F M, WANG S M, LI Z X, WANG Y F.  Dual role of abscisic acid on antioxidative defense in grass pea seedling (Lathyrus sativus L.)[J]. Pakistan Journal of Botany, 2006, 38(4): 999-1014.

    49. [49]

      杨惠敏, 张晓艳, 王根轩, 王亚馥, 乔立新.  干旱条件下两种山黧豆气孔特性及种子ODAP, 粗蛋白和淀粉积累的研究[J]. 兰州大学学报(自然科学版), 2004, 40(1): 64-67.
      YANG H M, ZHANG X Y, WANG G X, WANG Y F, QIAO L X.  Stomatal characteristics and the contents of seed ODAP, protein and starch in two varieties of grass pea under stress condition[J]. Journal of Lanzhou University (Natural Sciences), 2004, 40(1): 64-67.

    50. [50]

      BATOOL S, USLU V V, RAJAB H, AHMAD N, WAADT R, GEIGER D, MALAGOLI M, XIANG C B, HEDRICH R, RENNENBERG H, HERSCHBACH C, HELL R, WIRTZ M.  Sulfate is incorporated into cysteine to trigger ABA production and stomatal closure[J]. Plant Cell, 2018, 30(12): 2973-2987. doi:

    51. [51]

      RAJAB H, KHAN M S, MALAGOLI M, HELL R, WIRTZ M.  Sulfate-induced stomata closure requires the canonical ABA signal transduction machinery[J]. Plants, 2019, 8(): 21-. doi:

    52. [52]

      XU Q L, LIU F J, QU R H, GILLMAN J D, BI C X, HU X, CHEN P, KRISHNAN H B.  Transcriptomic profiling of Lathyrus sativus L. metabolism of β-ODAP, a toxin associated with neurodegenerative lower limb paralysis[J]. Plant Molecular Biology Reporter, 2018, 36(5-6): 832-843. doi:

    53. [53]

      KUSAMA-EGUCHI K, YOSHINO N, MINOURA A, WATANABE K, KUSAMA T, LAMBEIN F, IKEGAMI F.  Sulfur amino acids deficiency caused by grass pea diet plays an important role in the toxicity of L-β-ODAP by increasing the oxidative stress: Studies on a motor neuron cell line[J]. Food and Chemical Toxicology, 2011, 49(3): 636-643. doi:

    54. [54]

      CHAKRABORTY S, MITRA J, SAMANTA M K, SIKDAR N, BHATTACHARYYA J, MANNA A, PRADHAN S, CHAKRABORTY A, PATI B R.  Tissue specific expression and in-silico characterization of a putative cysteine synthase gene from Lathyrus sativus L[J]. Gene Expression Patterns, 2018, 27(): 128-134. doi:

    55. [55]

      焦成瑾. 山黧豆毒素积累生理机制及相关合成酶研究. 兰州: 兰州大学博士学位论文, 2011.
      JIAO C J. Studies on the accumulation mechanisms and related synthases of toxin in Lathyrus sativus. PhD Thesis. Lanzhou: Lanzhou University, 2011.

    56. [56]

      焦成瑾, 赵菲轶, 谢尚强, 袁毅君, 杨玲娟.  半胱氨酸合成酶与β-腈基丙氨酸合成酶活性检测[J]. 氨基酸和生物资源, 2014, 36(4): 66-72.
      JIAO C J, ZHAO F Y, XIE S Q, YUAN Y J, YANG L J.  Assay for activities of cysteine synthase and β-cyanoalanine synthase[J]. Amino Acid & Biotic ResourcesBG视讯, 2014, 36(4): 66-72.

    57. [57]

      LAMBEIN F, ONGENA G, KUO Y H.  β-Isoxazolinone-alanine is involved in the biosynthesis of the neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid[J]. Phytochemistry, 1990, 29(12): 3793-3796. doi:

    58. [58]

      KUO Y H, IKEGAMI F, LAMBEIN F.  Metabolic routes of beta-(isoxazolin-5-on-2-yl)-L-alanine (BIA), the precursor of the neurotoxin ODAP (beta-N-oxalyl-L-alpha, beta-diaminopropionic acid), in different legume seedlings[J]. Phytochemistry, 1998, 49(1): 43-48. doi:

    59. [59]

      TAKAHASHI H, WATANABE-TAKAHASHI A, SMITH F W, BLAKE-KALFF M, HAWKESFORD M J, SAITO K.  The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana[J]. Plant Journal, 2000, 23(2): 171-182. doi:

    60. [60]

      YOSHIMOTO N, TAKAHASHI H, YAMAYA T, SAITO K.  Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots[J]. Plant Journal, 2002, 29(4): 465-473. doi:

    61. [61]

      TAKAHASHI H, KOPRIVA S, GIORDANO M, SAITO K, HELL R.  Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes[J]. Annual Review of Plant Biology, 2011, 62(1): 157-184. doi:

    62. [62]

      YOSHIMOTO N, INOUE E, SAITO K, YAMAYA T, TAKAHASHI H.  Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis[J]. Plant Physiology, 2003, 131(4): 1511-1517. doi:

    63. [63]

      CAO M J, WANG Z, WIRTZ M, HELL R, OLIVER D J, XIANG C B.  SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana[J]. Plant Journal, 2013, 73(4): 607-616. doi:

    64. [64]

      KATAOKA T, WATANABE-TAKAHASHI A, HAYASHI N, OHNISHI M, MIMURA T, BUCHNER P, HAWKESFORD M J, YAMAYA T, TAKAHASHI H.  Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis[J]. Plant Cell, 2004, 16(10): 2693-2704. doi:

    65. [65]

      HUANG Q, WANG M, XIA Z.  TheSULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress[J]. Journal of Plant Physiology, 2018, 220(): 24-33. doi:

    66. [66]

      GALLARDO K, COURTY P, SIGNOR C L, WIPF D, VERNOUD V.  Sulfate transporters in the plant’s response to drought and salinity: Regulation and possible functions[J]. Frontiers in Plant Sciences, 2014, 5(): 580-.

    67. [67]

      CHEN Z, ZHAO P X, MIAO Z Q, QI G F, WANG Z, YUAN Y, AHMAD N, CAO M J, HELL R, WIRTZ M, XIANG C B.  SULTR3s function in chloroplast sulfate uptake and affect ABA biosynthesis and the stress response[J]. Plant Physiology, 2019, 180(1): 593-604. doi:

    68. [68]

      PAPENBROCK J, RIEMENSCHNEIDER A, KAMP A, SCHULZ-VOGT H N, SCHMIDT A.  Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants: From the field to the test tube and back[J]. Plant Biology, 2007, 9(5): 582-588. doi:

    69. [69]

      CALDERWOOD A, KOPRIVA S.  Hydrogen sulfide in plants: From dissipation of excess sulfur to signaling molecule[J]. Nitric Oxide, 2014, 41(): 72-78. doi:

    70. [70]

      HANCOCK J T, WHITEMAN M.  Hydrogen sulfide and cell signaling: Team player or referee?[J]. Plant Physiology and Biochemistry, 2014, 78(): 37-42. doi:

    71. [71]

      KHAN M N, ALZUAIBR F M, AL-HUQAIL A A, SIDDIQUI M H, ALI H M, AL-MUWAYHI M A, AL-HAQUE H N.  Hydrogen sulfide-mediated activation of O-Acetylserine (Thiol) Lyase and L/D-cysteine desulfhydrase enhance dehydration tolerance in Eruca sativa Mill[J]. International Journal of Molecular Sciences, 2018, 19(): 3981-. doi:

    72. [72]

      JIN Z P, XUE S W, LUO Y N, TIAN B H, FANG H H, LI H.  Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis[J]. Plant Physiology and Biochemistry, 2013, 62(): 41-46. doi:

    73. [73]

      MACHINGURA M, SALOMON E, JEZ J M, EBBS S D.  The β-cyanoalanine synthase pathway: Beyond cyanide detoxification[J]. Plant, Cell and Environment, 2016, 39(10): 2329-2341. doi:

    74. [74]

      LIANG W S.  Drought stress increases both cyanogenesis and betacyanoalanine synthase activity in tobacco[J]. Plant Science, 2003, 165(5): 1109-1115. doi:

    75. [75]

      MACHINGURA M, SIDIBE A, WOOD A J, EBBS S D.  The β-cyanoalanine pathway is involved in the response to water deficit in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2013, 63(): 159-169. doi:

    76. [76]

      TAKAHASHI H, SAITO K.  Subcellular localization of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur[J]. Plant Physiology, 1996, 112(1): 273-280. doi:

    77. [77]

      MACHINGURA M, EBBS S D.  Increased beta-cyanoalanine synthase and asparaginase activity in nitrogen-deprived wheat exposed to cyanide[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(6): 808-810. doi:

    78. [78]

      WIRTZ M, HELL R.  Functional analysis of the cysteine synthase protein complex from plants: Structural, biochemical and regulatory properties[J]. Journal of Plant Physiology, 2006, 163(3): 273-286. doi:

    79. [79]

      KUMARAN S, YI H, KRISHNAN H B, JEZ J M.  Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions[J]. Journal of Biological Chemistry, 2009, 284(15): 10268-10275. doi:

    80. [80]

      JEZ J M, DEY S.  The cysteine regulatory complex from plants and microbes: What was old is new again[J]. Current Opinion in Structural Biology, 2013, 23(2): 302-310. doi:

    81. [81]

      YI H, DEY S, KUMARAN S, LEE S G, KRISHNAN H B, JEZ J M.  Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone[J]. Journal of Biological Chemistry, 2013, 288(51): 36463-36472. doi:

    82. [82]

      BLASZCZYK A, BRODZIK R, SIRKO A.  Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase[J]. Plant Journal, 1999, 20(2): 237-243. doi:

    83. [83]

      HAAS F H, HEEG C, QUEIROZ R, BAUER A, WIRTZ M, HELL R.  Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells[J]. Plant Physiology, 2008, 148(2): 1055-1067. doi:

    84. [84]

      LIU F, YOO B C, LEE J Y, PAN W, HARMON A C.  Calcium-regulated phosphorylation of soybean serine acetyltransferase in response to oxidative stress[J]. Journal of Biological Chemistry, 2006, 281(37): 27405-27415. doi:

    85. [85]

      ZHOU G K, KONG Y Z, CUI K R, LI Z X, WANG Y F.  Hydroxyl radical scavenging activity of β-N-oxalyl-L-α, β-diaminopropionic acid[J]. Phytochemistry, 2001, 58(5): 759-762. doi:

    86. [86]

      DAI C, HUANG J, CUI X, QIU L, LIU C, GUAN H, QU Y, YANG Y.  Selenium enhances antioxidant capacity by improving dencichine content in Panax notoginseng[J]. Industrial Crops and Products, 2019, 131(): 250-256. doi:

    87. [87]

      BG视讯 jez j m, fukagawa n k. plant sulfur compounds and human health in: jez j m(ed.), sulfur: a missing link between soils, crops, and nutrition. madison: asa-cssa-sssa publishing, 2008.

    88. [88]

      HELL R, HILLEBRAND H.  Plant concepts for mineral acquisition and allocation[J]. Current Opinion in Biotechnology, 2001, 12(2): 161-168. doi:

    89. [89]

      KIM W S, KRISHNAN H B.  Expression of an 11 kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells[J]. Plant Biotechnology Journal, 2004, 2(3): 199-210. doi:

    90. [90]

      KRISHNAN H B, JEZ J M.  Review: The promise and limits for enhancing sulfur-containing amino acid content of soybean seed[J]. Plant Science, 2018, 272(): 14-21. doi:

    91. [91]

      KIM W S, JEZ J M, KRISHNAN H B.  Effect of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich delta-zein in transgenic soybean[J]. Frontiers in Plant Science, 2014, 6(): 633-.

    92. [92]

      DING Y, ZHOU X, ZUO L, WANG H, YU D.  Identification and functional characterization of the sulfate transporter gene GmSULTR1;2b in soybean[J]. BMC Genomics, 2016, 17(): 373-. doi:

    93. [93]

      KIM W S, CHRONIS D, JUERGENS M, SCHROEDER A C, HYUN S W, JEZ J M, KRISHNAN H B.  Transgenic soybean plants overexpressing O-acetylserinesulfhydrylase accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in seeds[J]. Planta, 2012, 235(1): 13-23. doi:

    94. [94]

      张明科, 刘凤娟, 陶英杰, 胡鑫, 李荣硕, 徐全乐.  山黧豆CASase基因的克隆及RNAi载体的构建[J]. 草地学报, 2016, 24(5): 1146-1149. doi:
      ZHANG M K, LIU F J, TAO Y J, HU X, LI R S, XU Q L.  Cloning of CASasegene from Lathyrus sativus and construction of its RNAi vector[J]. Acta Agrestia Sinica, 2016, 24(5): 1146-1149. doi:

    95. [95]

      陶英杰, 刘凤娟, 毕春晓, 任雪冰, 曲瑞红, 李科友, 徐全乐.  山黧豆CASase基因DNA全长序列的扩增及CRISPR/Cas9敲除载体的构建[J]. 西北农林科技大学学报(自然科学版), 2018, 46(8): 23-28.
      TAO Y J, LIU F J, BI C X, REN X B, QU R H, LI K Y, XU Q L.  Amplification of CASase gene from Lathyrus sativus and construction of its knock-out vector via CRISPR/Cas9 system[J]. Journal of Northwest A&F University (Natural Science Edition)BG视讯, 2018, 46(8): 23-28.

    96. [96]

      HIRAI M Y, KIM H, HAYASHI H, CHINO M, NAITO S, FUJIWARA T.  Independent roles of methionine and O-acetyl-l-serine in the regulation of the β subunit gene of β-conglycinin[J]. Soil Science and Plant Nutrition, 2002, 48(1): 87-94. doi:

    97. [97]

      XU Q L, SONG B, LIU F J, SONG Y Y, CHEN P, LIU S S, KRISHNAN H B.  Identification and characterization of β-Lathyrin, an abundant glycoprotein of grass pea (Lathyrus sativus L.), as a potential allergen[J]. Journal of Agricultural Food and Chemistry, 2018, 66(32): 8496-8503. doi:

    98. [98]

      KRISHNAN H B, SONG B, OEHRLE N W, CAMERON J C, JEZ J M.  Impact of overexpression of cytosolic isoform of O-acetylserinesulfhydrylase on soybean nodulation and nodule metabolome[J]. Scientific Reports, 2018, 8(): 2367-. doi:

    1. [1]

      张荟荟甄世财张一弓杨刚顾祥沙吾列·沙比汗王玉热娜·阿布都克力木BG视讯 . 12份苜蓿种质材料苗期抗旱性综合评价. 草业科学, 2014, 8(4): 737-743.

    2. [2]

      汤 聪刘 念郭 微蔡 鑫苏建华刘 萍 . 广州地区8种草坪式屋顶绿化植物的抗旱性. 草业科学, 2014, 8(10): 1867-1876. doi:  BG视讯

    3. [3]

      娄艳白江平杨宏羽李维婷高慧娟张俊莲王蒂张金林王旺田 . 马铃薯种质的遗传特性与抗旱性的关系. 草业科学, 2016, 10(3): 431-441. doi: 

    4. [4]

      张彦妮焦孟月刘奕佳 . 表达二穗短柄草CBF2基因拟南芥抗旱性分析. 草业科学, 2016, 10(8): 1518-1525. doi: 

    5. [5]

      康建军赵文智岳利军赵明郑颖 . K2SiO3促进梭梭生长并增强其抗旱性. 草业科学, 2015, 9(10): 1631-1640. doi:  BG视讯

    6. [6]

      雷舒涵杨妮妮余倩倩张浩玮田彦锋白小明 . 甘肃地区10个野生观赏草种子萌发期抗旱性评价. 草业科学, 2016, 10(12): 2475-2484. doi: 

    7. [7]

      李本峰杜红梅 . 褪黑素预处理提高多年生黑麦草抗旱性的机理分析. 草业科学, 2019, 36(3): 666-676. doi: 

    8. [8]

      钱瑭璜雷江丽刘建华宋凤鸣马楠 . 转胡杨PeDREB2b基因白三叶表型变异及抗旱性评价. 草业科学, 2016, 10(5): 907-916. doi:  BG视讯

    9. [9]

      王竞红刘素欣王非多多张秀梅陈艾李鹤王璐瑶 . 多效唑对不同生境多年生黑麦草抗旱性的影响. 草业科学, 2016, 10(5): 926-934. doi:  BG视讯

    10. [10]

      刘新符开欣郭志慧张新全白史且李达旭张昌兵张成林孙铭马啸 . 6份川西北短芒披碱草种质苗期的抗旱性综合评价. 草业科学, 2017, 11(1): 101-111. doi: 

    11. [11]

      葛芳红王宁胡澍周正朝蒋平海 . 陕北黄土丘陵沟壑区主要植物种子对干旱胁迫的萌发响应及抗旱性评价. 草业科学, 2018, 12(2): 348-356. doi: 

    12. [12]

      曾红温庚金罗旭荣曾林军王玲玲许建新 . 4种轻型屋顶绿化植物抗旱能力的综合评价. 草业科学, 2016, 10(6): 1084-1093. doi: 

    13. [13]

      谭家郎胡永霖王成龙杨占彪朱雪梅 . 普陀山苔草植物络合素合成酶CpPCS基因克隆及其在叶中的表达分析. 草业科学, 2016, 10(12): 2503-2510. doi:  BG视讯

    14. [14]

      谢瑞娟张小晶刘金平游明鸿郭海燕 . 干旱和遮阴对荩草构件形态及生物量分配的影响. 草业科学, 2017, 11(7): 1496-1505. doi: 

    15. [15]

      张彦妮李博何淼 . PEG干旱胁迫对大花飞燕草幼苗生理特性的影响. 草业科学, 2014, 8(3): 446-450. doi: 

    16. [16]

      刘金龙王莹许爱云陶利波于双许冬梅 . 干旱胁迫下5种禾本科牧草幼苗期的生理特性. 草业科学, 2018, 12(5): 1106-1115. doi: 

    17. [17]

      曹宏马生发韩雍陈正武 . 5个紫花苜蓿品种在陇东地区的引进筛选试验. 草业科学, 2014, 8(9): 1761-1766. doi:  BG视讯

    18. [18]

      张晓文张建全柴琦张吉树张有拥石福年王锁民 . 荒漠植物专用有机肥在梭梭大田育苗中的应用效果. 草业科学, 2017, 11(2): 339-346. doi: 

    19. [19]

      刘静周景乐陈振江魏学凯李涛李春杰 . 内生真菌发酵液浸种对干旱胁迫下黑麦草种子萌发的影响. 草业科学, 2018, 12(4): 839-847. doi: 

    20. [20]

      赵春程李晓宁张寅坤张婷傅金民 . 4个多年生黑麦草品种对干旱胁迫的生理响应. 草业科学, 2020, 37(4): 669-677. doi:  BG视讯

  • BG视讯

    图 1  BG视讯 β-ODAP可能的生物合成通路

    Figure 1.  BG视讯 Possible pathway of β-ODAP biosynthesis

    图 2  BG视讯 硫代谢参与调控植物气孔关闭

    Figure 2.  Sulfur metabolism induces the closure of plant stomatal

    表 1  影响β-ODAP含量的环境因素

    Table 1.  BG视讯 Environmental factors affecting β-ODAP content

    影响因素 Various environmental factor β-ODAP含量变化 β-ODAP content 文献 Reference
    微量元素 Micronutrients 硼 B 升高 Up [34]
    钴 Co 降低 Down [34]
    铁 Fe 升高 Up [35]
    缺钼 Mo deficiency 升高 Up [22, 36]
    缺锰 Mn deficiency 升高 Up [22, 36]
    缺锌 Zn deficiency 升高 Up [35]
    大量元素 Macronutrients 缺氮 N deficiency 升高 Up [22, 36]
    缺镁 Mg deficiency 升高 Up [37]
    缺钾 K deficiency 升高 Up [37]
    缺磷 P deficiency 升高 Up [22, 36]
    缺钙 Ca deficiency 升高 Up [22, 36]
    渗透压 Osmotic stresses 干旱 Drought 升高 Up [34]
    低盐 Low salinity 降低 Down [34]
    聚乙二醇 PEG 升高 Up [29]
    重金属 Heavy metals 镉 Cd 升高 Up [38]
    铝 Al 升高 Up [38]
    铕 Eu 降低 Down [34]
    根瘤菌 Rhizobium 降低 Down [34]
    下载: 导出CSV
        • <form id='xn9n3'></form>
            <bdo id='xn9n3'><sup id='xn9n3'><div id='xn9n3'><bdo id='xn9n3'></bdo></div></sup></bdo>

              • 加载中
              • 图(2)表(1)
                • PDF下载量:  8
                • 文章访问数:  960
                • HTML全文浏览量:  243
                • 通讯作者:  徐全乐,
                • 收稿日期:  2019-07-02
                • 刊出日期:  2020-05-01
                通讯作者: 陈斌,
                • 1. 

                  BG视讯shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

                1. 本站搜索
                2. 百度学术搜索
                3. 万方数据库搜索
                4. CNKI搜索