BG视讯

欢迎访问 草业科学,今天是

butongpinzhonglimaiyoumiaoduiganhanxiepohefushuideshenglixiangying

刘文瑜 何斌 杨发荣 吕玮 王旺田 黄杰 魏玉明 金茜 陈玉祥

引用本文: 刘文瑜,何斌,杨发荣,吕玮,王旺田,黄杰,魏玉明,金茜,陈玉祥. 不同品种藜麦幼苗对干旱胁迫和复水的生理响应. 草业科学, 2019, 36(10): 2655-2665. doi: shu
Citation:  LIU W Y, HE B, YANG F R, LYU W, WANG W T, HUANG J, WEI Y M, JIN Q, CHEN Y X. Physiological response to drought and re-watering of different quinoa varieties. Pratacultural Science, 2019, 36(10): 2655-2665. doi: shu

不同品种藜麦幼苗对干旱胁迫和复水的生理响应

    作者简介: 刘文瑜(1985-),女,甘肃兰州人,助理研究员,博士,主要从事藜麦逆境生态生理研究。E-mail: yu850721.;
    通讯作者: 杨发荣,
  • 基金项目:BG视讯 国家自然基金“不同海拔对藜麦产量和品质的影响及生理生态机制(31660357)”;甘肃省科技厅重点研发项目“耐旱作物优异种质资源引进与干旱灌区抗逆品种选育(18YF1WA093)”;兰州市科技支撑计划“兰州藜麦新品种选育及栽培加工技术研究与示范(2017-2-5)”;甘肃省农业科学院农业科技创新专项计划“藜麦耐旱生理生态机制与转录组分析(2017GASS66)”;甘肃省青年科技人才托举工程项目“藜麦耐盐生理生态机制研究”;甘肃省现代农业科技支撑体系区域创新中心重点科技项目“高寒区饲草品种筛选与种养结合技术集成示范(2019GAAS51)”

摘要: 为研究干旱胁迫和复水对不同品种藜麦(Chenopodium quinoa)幼苗叶片叶绿素荧光参数和活性氧代谢的影响,本研究以‘陇藜1号’(L-1)、‘陇藜2号’(L-2)、‘陇藜3号’(L-3)和‘陇藜4号’(L-4)为供试品种,干旱处理10 d后进行复水处理24 h,测定叶片叶绿素荧光参数、丙二醛(MDA)、O2·-产生速率及抗氧化酶活性,采用主成分分析法筛选耐旱性评价指标,并采用隶属函数法对不同品种藜麦耐旱性进行综合评价。结果表明,干旱胁迫处理下,藜麦品种L-1、L-3和L-4幼苗叶片叶绿素荧光参数FoFm较对照(CK)分别下降了18.03%、18.22%、7.72%和16.25%、18.96%、10.64%,供试4个藜麦品种幼苗叶片Fv/FmFv/Fo分别较CK下降了5.00%、10.43%、8.06%、4.78%和16.84%、30.71%、25.44%、15.76%,非光化学淬灭系数(NPQ)得到显著提高,MDA含量和O2·-产生速率均较CK显著升高了105.88%、62.86%、58.13%、156.20%和112.51%、66.45%、130.45%和88.20%,同时叶片内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性显著增强。复水后,不同品种藜麦幼苗叶片FoFmFv/FmFv/Fo及NPQ均恢复至干旱胁迫处理前水平,MDA含量和O2·-产生速率较干旱胁迫处理虽有下降,但未恢复至干旱胁迫处理前水平,抗氧化酶SOD活性弱于CK,POD、CAT和APX活性仍高于处理前水平。说明复水处理后植株通过调节体内抗氧化酶水平,清除活性氧的积累,从而增强叶片光合作用,缓解干旱对藜麦幼苗生长造成的有害影响。隶属函数法分析显示4个供试品种中陇藜1号耐旱性最优。本研究从生理学角度明确了干旱复水对藜麦幼苗生长的影响,为旱区种植藜麦提供了理论依据。

English

    1. [1]

      CHENG L X, WANG Y P, HE Q, LI X J, ZHANG F.  Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration[J]. BMC Plant Biology, 2016, 16(): 188-210. doi:

    2. [2]

      曹丹, 陈道钳, 吴茜, 殷俐娜, 邓西平, 王仕稳.  复水对旱后不同玉米品种植株生长恢复能力及其生理响应特性的影响[J]. 西北植物学报, 2015, 35(6): 1222-1228. doi:
      CAO D, CHEN D Q, WU Q, YIN L N, DENG X P, WANG S W.  Research on re-watering post-drought growth recovery capacity and physiological characteristics of different maize varieties[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(6): 1222-1228. doi:

    3. [3]

      LIU C G, WANG Y J, PAN K W, JIN Y Q, LIANG J, ZHANG L.  Photosynthetic carbon and nitrogen metabolism and the relationship between their metabolites and lipid peroxidation in dwarf bamboo (Fargesia rufa Yi) during drought and subsequent recovery[J]. Trees, 2015, 29(6): 1633-1647. doi:

    4. [4]

      魏清江, 冯芳芳, 马张正, 苏受婷, 宁少君, 辜青青.  干旱复水对柑橘幼苗叶片光合、叶绿素荧光及根系构型的影响[J]. 应用生态学报, 2018, 29(8): 2485-2492.
      WEI Q J, FENG F F, M Z Z, SU S T, NING S J, GU Q Q.  Effects of drought and rewatering on leaf photosynthesis, chlorophyll fluorescence, and root architecture of citrus seedlings[J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2485-2492.

    5. [5]

      刘婷婷, 陈道钳, 王仕稳, 殷俐娜, 邓西平.  不同品种高粱幼苗在干旱复水过程中的生理生态响应[J]. 草业学报, 2018, 27(6): 100-110.
      LIU T T, CHEN D Q, WANG S W, YIN L N, DENG X P.  Physio-ecological responses to drought and subsequent re-watering in sorghum seedlings[J]. Acta Prataculturae Sinica, 2018, 27(6): 100-110.

    6. [6]

      李州, 彭燕, 苏星源.  不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应[J]. 草业学报, 2013, 22(2): 257-263. doi:
      LI Z, PENG Y, SU X Y.  Physiological responses of white clover by different leaf types associated with anti-oxidative enzyme protection and osmotic adjustment under drought stress[J]. Acta Prataculturae Sinica, 2013, 22(2): 257-263. doi:

    7. [7]

      杨发荣.  藜麦新品种陇藜1号的选育及应用前景[J]. 甘肃农业科技, 2015, 12(): 1-5. doi:
      YANG F R.  Breeding and application prospects of new variety Chenopodium quinoa cv. Longli 1[J]. Gansu Agricultural Sciences and Technology, 2015, 12(): 1-5. doi:

    8. [8]

      顾娴, 黄杰, 魏玉明, 金茜, 杨发荣.  藜麦研究进展及发展前景[J]. 中国农学通报, 2015, 31(30): 201-204. doi:
      GU X, HUANG J, WEI Y M, JIN Q, YANG F R.  Development prospects and research of Chenopodium quinoa[J]. Chinese Agricultural Science Bulletin, 2015, 31(30): 201-204. doi:

    9. [9]

      刘文瑜, 杨发荣, 黄杰, 魏玉明, 金茜.  NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响[J]. 西北植物学报, 2017, 37(9): 1797-1804. doi:
      LIU W Y, YANG F R, HUANG J, WEI Y M, JIN Q.  Response of seedling growth and the activities of antioxidant enzymes of Chenopodium quinoa to salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9): 1797-1804. doi:

    10. [10]

      杨发荣, 黄杰, 魏玉明, 李敏权, 何学功, 郑健.  藜麦生物学特性及应用[J]. 草业科学, 2017, 34(3): 607-613. doi:
      YANG F R, HUANG J, WEI Y M, LI M Q, HE X G, ZHENG J.  A review of biological characteristics, applications and culture of Chenopodium quinoa[J]. Pratacultural Science, 2017, 34(3): 607-613. doi:

    11. [11]

      黄杰, 杨发荣, 李敏权, 魏玉明, 顾娴, 漆永红.  13个藜麦材料在甘肃临夏旱作区适应性的初步研究[J]. 草业学报, 2016, 25(3): 191-201. doi:
      HUANG J, YANG F R, LI M Q, WEI Y M, GU X, QI Y H.  Preliminary evaluation of adaptability of 13 quinoa varieties in the Linxia arid region of Gansu Province, China[J]. Acta Prataculturae Sinica, 2016, 25(3): 191-201. doi:

    12. [12]

      郑度.  中国西北干旱区环境问题与生态建设[J]. 河北师范大学学报(自然科学版), 2006, 30(3): 349-352. doi:
      ZHENG D.  Environmental issues and eco-reconstruction in Northwest arid region of China[J]. Journal of Hebei Normal University (Natural Science Edition), 2006, 30(3): 349-352. doi:

    13. [13]

      李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000: 169-184.
      LI H S. Principal and Technology of Plant Physiology and Biochemistry Experiment. Beijing: Higher Education Press, 2000: 169-184.

    14. [14]

      李小芳, 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2016: 208.
      LI X F, ZHANG Z L. Guide of Plant Physiological Experiments. Beijing: Higher Education Press, 2016: 208.

    15. [15]

      HUANG X S, LIU J H, CHEN X J.  Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes[J]. BMC Plant Biology, 2010, 10(): 230-. doi:

    16. [16]

      SHI S, FU X Z, PENG T, HUANG X S, FAN Q J, LIU J H.  Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response[J]. Tree Physiology, 2010, 30(): 914-922. doi:

    17. [17]

      YANG P M, HUANG Q C, QIN G Y, ZHAO S P, ZHOU J G.  Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice[J]. Photosynthetica, 2014, 52(2): 193-202. doi:

    18. [18]

      JEBARA S, JEBARA M, LIMAM F, AOUANI M E.  Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress[J]. Journal of Plant Physiology, 2005, 162(): 929-936. doi:

    19. [19]

      LI Z, TAN X F, LU K, LIU Z M, WU L L.  The effect of CaCl 2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought stress[J]. Phtotosynthetica, 2017, 55(3): 553-560. doi:

    20. [20]

      CHEN D Q, WANG S W, CAO B B, CAO D, LENG G H, LI H B, YIN L N, SHAN L, DENG X P.  Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings[J]. Frontiers in Plant Science, 2015, 6(): 1-15.

    21. [21]

      BG视讯 strasser r j, srivastava a, tsimilli-michael m. the fluorescence transient as a tool to characterize and screen photosynthetic samples. //probing photosynthesis: mechanism, regulation and adaptation. london: taylor & francis, 1998: 1-59.

    22. [22]

      ZAKS J, AMARNATH K, SYLAK-GLASSMAN E J, FLEMING G R.  Models and measurements of energy-dependent quenching[J]. Photosynthesis Research, 2013, 116(): 389-409. doi:

    23. [23]

      SAYED O H.  Chlorophyll fluorescence as a tool in cereal crop research[J]. Photosynthetica, 2003, 41(): 321-330. doi:

    24. [24]

      ALEXANDER S L, EVGENY V T, ElLVERA S S, ANDREY A L, JAIME A T.  Mild abiotic stresses have different effects on chlorophyll fluorescence parameters in leaves of young woody and herbaceous invasive plants[J]. Acta Physiologiae Plantarum, 2017, 39(1): 20-26. doi:

    25. [25]

      张丹, 任洁, 王慧梅.  干旱胁迫及复水对红松针叶和树皮绿色组织光合特性及抗氧化系统的影响[J]. 生态学杂志, 2016, 35(10): 2606-2614.
      ZHANG D, REN J, WANG H M.  Response of photosynthetic characteristics and antioxidant system in needles and bark chlorenchyma of Korean pine to drought stress and rehydration[J]. Chinese Journal of Ecology, 2016, 35(10): 2606-2614.

    26. [26]

      李晓梅, 盛积贵.  干旱和复水对2种辣椒叶绿素荧光参数的影响[J]. 西南农业学报, 2016, 29(1): 2567-2572.
      LI X M, SHENG J G.  Effect of drought stress and rehydration on chlorophyll fluorescence of two species of Capsicum[J]. Southwest China Journal of Agricultural SciencesBG视讯, 2016, 29(1): 2567-2572.

    27. [27]

      张金政, 张起源, 孙国锋, 何卿, 李晓东, 刘洪章.  干旱胁迫及复水对玉簪生长和光合作用的影响[J]. 草业学报, 2014, 23(1): 167-176. doi:
      ZHANG J Z, ZHANG Q Y, SUN G F, HE Q, LI X D, LIU H Z.  Effects of drought stress and re-watering on growth and photosynthesis of Hosta[J]. Acta Prataculturae Sinica, 2014, 23(1): 167-176. doi:

    28. [28]

      张利霞, 常青山, 侯小改, 陈苏丹, 戴攀峰.  NaCl胁迫对夏枯草幼苗抗氧化能力及光合特性的影响[J]. 草业学报, 2017, 26(11): 167-175. doi:
      ZHANG L X, CHANG Q S, HOU X G, CHEN S D, DAI P F.  Effects of NaCl stress on antioxidant capacity and photosynthetic characteristics of Prunella vulgaris seedlings[J]. Acta Prataculturae Sinica, 2017, 26(11): 167-175. doi:

    29. [29]

      张木清, 陈如凯. 作物抗旱分子生理与遗传改良. 北京: 科学出版社, 2005.
      BG视讯 ZHANG M Q, CHEN R K. Molecular Physiology of Crop Drought Resistance and Genetic Improvement. Beijing: Sciences Press, 2005.

    30. [30]

      AZZEME A M, ABDULLAH S N A, AZIZ M A, WAHAB P E M.  Oil palm leaves and roots differ in physiological response, antioxidant enzyme activities and expression of stress-responsive genes upon exposure to drought stress[J]. Acta Physiologiae Plantarum, 2016, 38(): 52-63. doi:

    31. [31]

      王蕊, 李新国, 李绍鹏, 黄绵佳, 曾丽萍.  短期干旱胁迫和复水对巴西蕉幼苗生理特性的影响[J]. 热带作物学报, 2010, 31(8): 1362-1367. doi:
      WANG R, LI X G, LI S P, HUANG M J, ZENG L P.  Effects of short-term drought stress and re-watering in physiological characteristics of Brazil banana plantlet[J]. Chinese Journal of Tropical Crops, 2010, 31(8): 1362-1367. doi:

    32. [32]

      刘文瑜, 杨宏伟, 魏小红, 刘博, 王高强, 吴伟涛.  外源NO调控盐胁迫下蒺藜苜蓿种子萌发生理特性及抗氧化酶的研究[J]. 草业学报, 2015, 24(2): 85-95. doi:
      LIU W Y, YANG H W, WEI X H, LIU B, WANG G Q, WU W T.  Effects of exogenous nitric oxide on seed germination, physiological characteristics and active oxygen metabolism of Medicago truncatula under NaCl stress[J]. Acta Prataculturae Sinica, 2015, 24(2): 85-95. doi:

    33. [33]

      董靖, 李红丽, 董智, 白文华.  H2S对NaCl胁迫下草木樨幼苗生理指标及抗氧化酶活性的影响[J]. 草业科学, 2018, 35(10): 2430-2437. doi:
      DONG J, LI H L, DONG Z, BAI W H.  Effect of H2S on physiological indexes and antioxidant activity of sweet clover seedlings under NaCl stress[J]. Pratacultural Science, 2018, 35(10): 2430-2437. doi:

    34. [34]

      田又升, 谢宗铭, 张建新, 董永梅, 李有忠, 于航, 王志军, 张成双.  干旱复水对棉花苗期抗氧化系统及光合荧光参数的影响[J]. 干旱地区农业研究, 2016, 34(6): 209-214. doi:
      TIAN Y S, XIE Z M, ZHANG J X, DONG Y M, LI Y Z, YU H, WANG Z J, ZHANG C S.  Effects of drought and re-watering on antioxidant system and photosynthetic fluorescence parameters of cotton seedlings[J]. Agricultural Research in the Arid Areas, 2016, 34(6): 209-214. doi:

    35. [35]

      崔豫川, 张文辉, 李志萍.  干旱和复水对栓皮栎幼苗生长和生理特性的影响[J]. 林业科学, 2014, 50(7): 66-73.
      CUI Y C, ZHANG W H, LI Z P.  Effects of drought stress and re-watering on growth and physiological characteristics of Quercus variabilis seedlings[J]. Scientia Silvae Sinica, 2014, 50(7): 66-73.

    36. [36]

      吴凯朝, 黄诚梅, 邓智年, 曹辉庆, 魏源文, 徐林, 李杨瑞, 杨丽涛.  干旱后复水对甘蔗伸长期生理生化特性的影响[J]. 南方农业学报, 2015, 46(7): 1166-1172. doi:
      WU K C, HUANG C M, DENG Z N, CAO H Q, WEI Y W, XU L, LI Y R, YANG L T.  Effects of drought stress and re-watering on physiological biochemical characteristics in sugarcane at elongation stage[J]. Journal of Southern Agriculture, 2015, 46(7): 1166-1172. doi:

    37. [37]

      高悦, 朱永铸, 杨志民, 杜红梅.  干旱胁迫和复水对冰草相关抗性生理指标的影响[J]. 草地学报, 2012, 20(2): 336-341. doi:
      GAO Y, ZHU Y Z, YANG Z M, DU H M.  Effects of drought stress and recovery on antioxidant enzyme activities of Agropyron cristatum[J]. Acta Agrestia Sinica, 2012, 20(2): 336-341. doi:

    38. [38]

      崔婷茹, 于慧敏, 李会彬, 边秀举, 王丽宏.  干旱胁迫及复水对狼尾草幼苗生理特性的影响[J]. 草业科学, 2017, 34(4): 788-793. doi:
      CUI T R, YU H M, LI H B, BIAN X J, WANG L H.  Effect of drought stress and re-watering on physiological characteristics of Pennisetum alopecuroides seedlings[J]. Pratacultural Science, 2017, 34(4): 788-793. doi:

    39. [39]

      蔡丽艳, 孙启忠, 李志勇, 李鸿雁, 师文贵, 刘磊.  干旱胁迫和复水对扁蓿豆幼苗生理特性的影响[J]. 华北农学报, 2012, 27(6): 107-112. doi:
      CAI L Y, SUN Q Z, LI Z Y, LI H Y, SHI W G, LIU L.  Effects of drought stress and rehydration on physiological characteristics of Medicago ruthenica seedlings[J]. Agriculturae Boreal-sinica, 2012, 27(6): 107-112. doi:

    1. [1]

      张彦妮雷蕾夏斌 . 干旱胁迫及复水对黄连花幼苗生长和生理特性的影响. 草业科学, 2016, 10(9): 1681-1689. doi:  BG视讯

    2. [2]

      金微微张会慧滕志远孟祥馨悦张书博张秀丽许楠孙广玉 . 盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响. 草业科学, 2017, 11(10): 2090-2098. doi:  BG视讯

    3. [3]

      后有丽苏世平李毅种培芳马鹏图魏斌 . 外源脱落酸对红砂叶片渗透调节物质含量及抗氧化酶活性的影响. 草业科学, 2020, 37(2): 245-255. doi: 

    4. [4]

      崔婷茹于慧敏李会彬边秀举王丽宏 . 干旱胁迫及复水对狼尾草幼苗生理特性的影响. 草业科学, 2017, 11(4): 788-793. doi: 

    5. [5]

      魏玉明杨发荣刘文瑜黄杰金茜 . 藜麦不同生育期营养物质积累与分配规律. 草业科学, 2018, 12(7): 1720-1727. doi:  BG视讯

    6. [6]

      林选栋武文莉林丽果周钰佩刘慧霞 . 不同盐胁迫水平下硅对高羊茅幼苗生物量、酶活性和渗透调节物质的影响. 草业科学, 2018, 12(7): 1653-1660. doi: 

    7. [7]

      杨发荣黄 杰魏玉明李敏权何学功郑 健 . 藜麦生物学特性及应用. 草业科学, 2017, 11(3): 607-613. doi: 

    8. [8]

      姚春娟郭圣茂马英超赖晓莲杨肖华 . 干旱胁迫对4种决明属植物光合作用和叶绿素荧光特性的影响. 草业科学, 2017, 11(9): 1880-1888. doi:  BG视讯

    9. [9]

      张景波张金鑫卢琦辛智鸣李新乐刘庆新李宏亮 . 乌兰布和沙漠油蒿叶片PSⅡ叶绿素荧光动力学参数及其光响应曲线动态. 草业科学, 2019, 36(3): 713-719. doi: 

    10. [10]

      王芳王铁兵李鹏德 . 外源ABA对干旱胁迫下玉米幼苗氧化损伤的保护作用. 草业科学, 2019, 36(11): 2887-2894. doi: 

    11. [11]

      李善家韩多红王恩军武燕 . 外源甜菜碱对盐胁迫下黑果枸杞种子萌发和幼苗保护酶活性的影响. 草业科学, 2016, 10(4): 674-680. doi:  BG视讯

    12. [12]

      徐苏男李悦陈忠林张利红 . 养分异质条件下连接和断开结缕草克隆分株抗氧化酶及丙二醛的生理整合. 草业科学, 2018, 12(2): 341-347. doi: 

    13. [13]

      黄玉婷吴亚刘大林张卫红 . 铝胁迫对草本植物生理的影响机制. 草业科学, 2018, 12(6): 1517-1527. doi: 

    14. [14]

      陈花王建武王建军王富刚 . 外源NO对盐胁迫下沙打旺种子萌发和幼苗生长的影响. 草业科学, 2017, 11(7): 1459-1468. doi: 

    15. [15]

      龙聪颖邓辉茗苏明洁蔡仕珍徐小明 . 3种盐胁迫对蓟幼苗生长及生理生化的影响. 草业科学, 2017, 11(12): 2484-2492. doi:  BG视讯

    16. [16]

      同琳静冯涛孙政国陈小东杨文祥李建龙 . 垄作模式下甜高粱对农田渍害胁迫的响应. 草业科学, 2018, 12(7): 1713-1719. doi: 

    17. [17]

      张 昆李明娜曹世豪孙 彦 . 白颖苔草对不同浓度NaCl胁迫的响应及其耐盐阈值. 草业科学, 2017, 11(3): 479-487. doi: 

    18. [18]

      寇江涛 . 外源2, 4-表油菜素内酯对盐胁迫下燕麦种子萌发抑制的缓解效应. 草业科学, 2020, 37(5): 916-925. doi: 

    19. [19]

      李雁博张蕴薇哈依夏杜金鸿刘 源陈 果王佺珍 . 须芒草、虉草和柳枝稷对干旱和盐胁迫的生理响应. 草业科学, 2014, 8(5): 905-914. doi: 

    20. [20]

      彭丹丹王晓娟李 州李亚萍彭 燕 . 亚精胺对PEG渗透胁迫下白三叶种子萌发及幼苗抗旱效应的影响. 草业科学, 2016, 10(9): 1739-1746. doi: 

  • BG视讯

    图 1  干旱胁迫和复水对藜麦幼苗叶片初始荧光和最大荧光的影响

    Figure 1.  Effect of drought stress and rehydration on Fo and Fm of quinoa seedling leaves

    图 2  BG视讯 干旱胁迫和复水对藜麦幼苗叶片PSⅡ最大光化学效率和潜在活性的影响

    Figure 2.  Effect of drought stress and rehydration on Fv/Fm and Fv/Fo of quinoa seedling leaves

    图 3  BG视讯 干旱胁迫和复水对藜麦幼苗叶片非光化学猝灭系数的影响

    Figure 3.  BG视讯 Effect of drought stress and rehydration on NPQ of quinoa seedling leaves

    图 4  干旱胁迫和复水对藜麦幼苗叶片MDA含量和O2·-产生速率的影响

    Figure 4.  Effect of drought stress and rehydration on MDA contents and O2·-BG视讯 production rate of quinoa

    图 5  干旱胁迫和复水对藜麦幼苗叶片抗氧化酶活性的影响

    Figure 5.  Effect of drought stress and rehydration on activities of SOD, POD, CAT, and APX of quinoa seedling leaves

    表 1  干旱胁迫及复水对藜麦幼苗叶片叶绿素含量的影响

    Table 1.  Effects of drought stress and re-watering on chlorophyll contents of quinoa seedlings

    mg·g–1
    品种
    Cultrivar
    对照
    Control
    干旱胁迫
    Drought stress
    复水处理
    Re-watering
    L-18.38 ± 0.57a7.35 ± 0.57a8.15 ± 1.27a
    L-28.06 ± 1.07a5.71 ± 0.38b7.39 ± 0.85a
    L-37.35 ± 0.43a 6.34 ± 0.71ab6.60 ± 0.70a
    L-48.23 ± 0.43a5.76 ± 0.86b6.37 ± 0.53a
     L-1,陇藜1号;L-2,陇藜2号;L-3,陇藜3号;L-4,陇藜4号;同列不同小写字母表示同一处理不同品种间差异显著(P < 0.05)。下同。
     L-1, Longli No.1; L-2, Longli No.2; L-3, Longli No.3; L-4, Longli No.4. Different lowercase letters in the same column indicate significant differences at the 0.05 level. similarly for the following tables and figures.
    下载: 导出CSV

    表 2  不同品种藜麦各指标间相关系数矩阵

    Table 2.  Correlation coefficient matrix among various indices of different quinoa varieties

    指标
    Indices
    I2I3I4I5I6I7I8I9I10I11I12
    I1 –0.033 0.288 0.796** 0.797** –0.710** –0.762** –0.289 –0.100 –0.386 –0.047 –0.667*
    I2 0.890** 0.248 0.229 –0.230 –0.013 –0.335 –0.526 –0.136 –0.013 –0.208
    I3 0.559 0.541 –0.420 –0.271 –0.368 –0.567 –0.045 0.101 –0.473
    I4 0.996* –0.837** –0.534 –0.403 –0.471 –0.322 –0.037 –0.841**
    I5 –0.834** –0.511 –0.437 –0.476 –0.349 –0.091 –0.860**
    I6 0.481 0.406 0.554 0.550 0.252 0.803**
    I7 –0.100 0.071 0.196 –0.380 0.386
    I8 0.120 0.646 0.578 0.661*
    I9 0.254 0.316 0.487
    I10 0.679* 0.538
    I11 0.389
     I1:叶绿素含量 Chlorophyll content;I2:Fo;I3:Fm;I4:Fv/Fo;I5:Fv/Fm;I6:NPQ;I7:MDA含量 MDA content;I8:O2·-产生速率 O2·- production rate;I9:SOD活性 SOD activity;I10:POD活性POD activity;I11:CAT活性 CAT activity;I12:APX活性 APX activity;*和**分别表示在0.05和0.01水平上显著和极显著相关;表3同。
     * indicates significant concentration at 0.05 and 0.01 level. similarly for the following Table 3.
    下载: 导出CSV

    表 3  BG视讯 各品种隶属函数值和综合评价值

    Table 3.  BG视讯 Subordinative function and comprehensive evaluation of different varieties

    品种
    Cultivar
    隶属函数值 Subordinative function综合评价值
    Comprehensive evaluation
    I1I2I3I4I5I6I7I8I9I10I11I12
    L-10.5530.4910.4580.4270.4290.5810.5350.5230.6050.5680.4910.4420.509
    L-20.5750.5250.4680.4330.4370.5310.4680.4300.4880.5770.4520.5430.494
    L-30.3870.5270.4960.4590.4650.5130.4250.4220.3860.4860.4530.5130.461
    L-40.4910.5100.5180.3840.3870.4910.5080.5060.4890.4770.5240.4810.481
    下载: 导出CSV
    BG视讯
  • <code id='3w591'><i id='3w591'><q id='3w591'><legend id='3w591'><pre id='3w591'><style id='3w591'><acronym id='3w591'><i id='3w591'><form id='3w591'><option id='3w591'><center id='3w591'></center></option></form></i></acronym></style><tt id='3w591'></tt></pre></legend></q></i></code><center id='3w591'></center>

      <dd id='3w591'></dd>

          <style id='3w591'></style><sub id='3w591'><dfn id='3w591'><abbr id='3w591'><big id='3w591'><bdo id='3w591'></bdo></big></abbr></dfn></sub>
          <dir id='3w591'></dir>
      1. 加载中
      2. 图(5)表(3)
        计量
        • PDF下载量:  10
        • 文章访问数:  166
        • HTML全文浏览量:  435
        文章相关
        • 通讯作者:  杨发荣,
        • 收稿日期:  2018-12-19
        • 刊出日期:  2019-10-01
        通讯作者: 陈斌,
        • 1. 

          shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

        1. 本站搜索
        2. 百度学术搜索
        3. 万方数据库搜索
        4. CNKI搜索

        /

        返回文章
        BG视讯