BG视讯

欢迎访问 草业科学,今天是

jiyuzhuanluzucexuduizihuamuxuqianxiepoxiangguanjiyindefujifenxi

郭强 王英哲 王昆 徐博

引用本文: 郭强,王英哲,王昆,徐博. 基于转录组测序对紫花苜蓿铅胁迫相关基因的富集分析. 草业科学, 2019, 36(10): 2525-2534. doi: shu
Citation:  GUO Q, WANG Y Z, WANG K, XU B. Enrichment analysis of genes that are related to lead stress in alfalfa, based on transcriptome sequencing. Pratacultural Science, 2019, 36(10): 2525-2534. doi: shu

基于转录组测序对紫花苜蓿铅胁迫相关基因的富集分析

    作者简介: 郭强(1993-),男,黑龙江大庆人,在读硕士生,研究方向为饲草种质资源开发与利用。E-mail: ;
    通讯作者: 徐博,
  • 基金项目:BG视讯 吉林省科技厅科技支撑计划“优质饲草品种选育及其配套种植技术研究与示范”(20180201072ny);吉林省教育厅科学技术研究项目“紫花苜蓿细胞质雄性不育系的细胞学和生理生化特性的研究”(JJKH20180666KJ)

摘要: 本文采用高通量Illumina Hiseq测序平台对紫花苜蓿(Medicago sativa)的铅胁迫处理组(Pb96)和对照组(CK)进行转录组测序,并对测序数据进行分析,探究紫花苜蓿抗铅应答的分子机制。结果表明,在铅胁迫处理下共检测到2 242个差异表达基因(Differentially expressed genes,DEGs)。其中,1 321个DEGs上调表达,921个DEGs下调表达。GO (Gene ontology,http://www.geneontology.org/)富集分析,差异表达基因主要涉及物质代谢、蛋白结合、催化活性等。KEGG (Kyoto encyclopedia of genes and genomes,http://www.genome.jp/kegg/)分析,差异基因主要涉及代谢途径、光合作用、淀粉和蔗糖代谢等。COG (Clusters of orthologous groups of proteins/orthologous groups of genes)分析,差异基因主要涉及“碳水化合物的运输和新陈代谢”、“翻译、核糖体结构和生物发生”、“次生代谢产物的生物合成、转运和分解代谢”等。本研究通过对紫花苜蓿根系转录组分析,为研究紫花苜蓿耐铅分子机制提供参考。

English

    1. [1]

      ISLAM E, YANG X, LI T, LIU D, JIN X, MENG F.  Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi[J]. Journal of Hazard Mater, 2007, 147(3): 806-816. doi:

    2. [2]

      JIANG N, LUO X, ZENG J, YANG Z R, ZHENG L Y, WANG S T.  Lead toxicity induced growth and antioxidant responses in Luffa cylindrica seedlings[J]. International Journal of Agriculture and BiologyBG视讯, 2010, 12(): 205-210.

    3. [3]

      KOPITTKE P M, ASHER C J, KOPITTKE R A, MENZIES N W.  Toxic effects of Pb2 on growth of cowpea (Vigna unguiculata)[J]. Environ Pollut, 2007, 150(2): 280-287. doi:

    4. [4]

      GHELICH S, ZARINKAMAR F, SOLANTANI B M, NIKNAM V.  Effect of lead treatment on medicarpin accumulation and on the gene expression of key enzymes involved in medicarpin biosynthesis in Medicago sativa L[J]. Environmental Science and Pollution Research, 2014, 21(24): 14091-14098. doi:

    5. [5]

      LOPEZ M L, PERALTER-VIDEA J R, BENITEZ T, GARDEA-TORRESDEY J L.  Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter[J]. Chemosphere, 2005, 61(4): 595-608. doi:

    6. [6]

      XU B, WANG Y, ZHANG S, GUO Q, JIN Y, CHEN J J, GAO Y H, MA H X.  Transcriptomic and physiological analyses of Medicago sativa L. roots in response to lead stress[J]. PLoS One, 2017, 12(4): e0175307-. doi:

    7. [7]

      MACOVEI A, BALESTRAZZI A, CONFALONIERI M, BUTTAFAVA A, CARBONERA D.  The TFⅡS and TFⅡS-like genes from Medicago truncatula are involved in oxidative stress response[J]. GeneBG视讯, 2011, 470(12): 20-30.

    8. [8]

      BALUSAMY S R, KIM Y J, RAHIMI S, SENTHIL K S, LEE O R, LEE S, YANG D C.  Transcript pattern of cytochrome P450, antioxidant and ginsenoside biosynthetic pathway genes under heavy metal stress in Panax ginseng Meyer[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(2): 194-202. doi:

    9. [9]

      ZHU F Y, LI L, LAM P Y, CHEN M X, CHYE M L, LO C.  Sorghum extracellular leucine-rich repeat protein SbLRR2 mediates lead tolerance in transgenic Arabidopsis[J]. Plant Cell Physiololgy, 2013, 54(9): 1549-1559. doi:

    10. [10]

      DENG W, YAN F, ZHANG X, TANG Y, YUAN Y.  Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis[J]. Plant Cell Physiology, 2015, 56(8): 1624-1640. doi:

    11. [11]

      ZHOU Z S, ZENG H Q, LIU Z P, YANG Z M.  Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal[J]. Plant Cell Environment, 2012, 35(1): 86-99. doi:

    12. [12]

      GAO J, ZHANG Y, LU C, PENG H, LUO M, LI G, SHEN Y, DING H, ZHANG Z, PAN G, LIN H.  The development dynamics of the maize root transcriptome responsive to heavy metal Pb pollution[J]. Biochemical and Biophysical Research Communications, 2015, 458(2): 287-293. doi:

    13. [13]

      WANG L, YANG H, LIU R, FAN G.  Detoxification strategies and regulation of oxygen production and flowering of Platanus acerifolia under lead (Pb) stress by transcriptome analysis[J]. Environmental Science and Pollution Research, 2015, 22(16): 12747-12758. doi:

    14. [14]

      毕博远, 韩凤朋.  黄土高原不同种植年限紫花苜蓿根系分泌物GC-MS分析[J]. 草地学报, 2018, (3): 611-617. doi:
      BI B Y, HAN F P.  GC-MS Analysis of root exudates of alfalfa in different years of planting on the loess plateau[J]. Journal of Grassland, 2018, (3): 611-617. doi:

    15. [15]

      丁振中, 曾哲灵, 龚劲松, 张超, 雷鹏, 高小燕, 徐俊山, 张家宏.  NaCl胁迫下壳寡糖对油菜苗生长的影响[J]. 生物化工, 2018, 4(3): 29-33. doi:
      DING Z Z, ZENG Z L, GONG J S, ZHANG C, LEI P, GAO X Y, XU J S, ZHANG J H.  Effects of chitosan oligosaccharides on the growth of rape seedlings under NaCl stress[J]. Biochemical, 2018, 4(3): 29-33. doi:

    16. [16]

      程贝, 王卫华, 吴忠东.  非均匀盐胁迫对番茄幼苗耐盐性的影响[J]. 园艺学报, 2018, 45(5): 77-86.
      CHENG B, WANG W H, WU Z D.  Effects of non-uniform salt stress on salt tolerance of tomato seedlings[J]. Journal of Horticulture, 2018, 45(5): 77-86.

    17. [17]

      BEJAMINI Y, YEKUTIELI D.  The control of the false discovery rate in multiple testing under dependency[J]. The Annals of Statistics, 2001, 29(4): 1165-1168. doi:

    18. [18]

      CHEN Y, WANG J, SHI G, SUN X, CHEN Z, XU S.  Human health risk assessment of lead pollution in atmospheric deposition in Baoshan District[J]. Environmental Geochemistry and Health, 2011, 33(6): 515-523. doi:

    19. [19]

      ROSSATO L V, NICOLOSO F T, FARIAS J G, CARGNELLUTI D, TABALDI L A, ANTES F G, Dressler V L, MORSCH V M, SCHETINGER M R.  Effects of lead on the growth, lead accumulation and physiological responses of Pluchea sagittalis[J]. Ecotoxicology, 2012, 21(1): 111-123. doi:

    20. [20]

      SALT D E, SMITH R D, RASKIN I.  Phytoremediation[J]. Annual Review of Plant Physiology and Plant Molecular BiologyBG视讯, 1998, 49(49): 643-668.

    21. [21]

      PULFORD I D, WASTON C.  Phytoremediation of heavy metal-contaminated land by trees–a review[J]. Environment International, 2003, 29(4): 529-540. doi:

    22. [22]

      黄海燕.假盘菌诱导下紫花苜蓿不同株系的转录组测序与抗病相关基因差异表达研究.兰州: 甘肃农业大学硕士学位论文, 2015.
      HUANG H Y. Transcriptome sequencing and differential expression of resistance-related genes in different strains of alfalfa (Medicago sativa L.) induced by pseudomonas. Master Thesis. Lanzhou: Gansu Agricultural University, 2015.

    23. [23]

      宋丽莉.紫花苜蓿抗寒转录组测序分析及MsNCX和MsCML的基因功能研究.哈尔滨: 哈尔滨师范大学博士学位论文, 2017.
      SONG L L. Sequencing analysis of cold-resistant transcriptome of alfalfa (Medicago sativa L.) and gene function of MsNCX and MsCML. PhD Thesis. Harbin: Harbin Normal University, 2017.

    24. [24]

      齐晓.紫花苜蓿在转录组水平响应低温胁迫的差异表达基因研究.北京: 中国农业科学院博士学位论文, 2017.
      QI X. Differential expression genes of alfalfa (Medicago sativa L.) in response to low temperature stress at the transcriptome level. PhD Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2017.

    25. [25]

      王少峡, 王振英, 彭永康.  DREB转录因子及其在植物抗逆中的作用[J]. 植物生理学通讯, 2004, 40(2): 17-20.
      WANG S X, WANG Z Y, PENG Y K.  DREB transcription factor and its role in plant stress resistance[J]. Plant Physiology Communications, 2004, 40(2): 17-20.

    26. [26]

      黄璐琦, 郭兰萍.  环境胁迫下次生代谢产物的积累及道地药材的形成[J]. 中国中药杂志, 2007, 32(4): 277-280. doi:
      HUNG Y Q, GUO L P.  Accumulation of the next metabolites in environmental stress and the formation of authentic medicinal materials[J]. Chinese Journal of Traditional Chinese Medicine, 2007, 32(4): 277-280. doi:

    1. [1]

      齐晓闵学阳张正社孙启忠刘文献 . 紫花苜蓿响应低温胁迫转录因子的鉴定及表达分析. 草业科学, 2017, 11(9): 1824-1829. doi: 

    2. [2]

      陈晶晶王英哲金艳郭强徐博 . 不同紫花苜蓿杂交组合对冻害胁迫的生理响应. 草业科学, 2018, 12(5): 1138-1144. doi: 

    3. [3]

      张世超王英哲金艳陈晶晶王莹徐博 . 紫花苜蓿细胞质雄性不育恢复基因的初步定位. 草业科学, 2018, 12(5): 1067-1071. doi: 

    4. [4]

      郭湘郭一帆黄思怡蒲棋杨康彭燕 . 干旱和盐胁迫对14个紫花苜蓿品种种子萌发特性的影响. 草业科学, 2019, 36(9): 2292-2303. doi:  BG视讯

    5. [5]

      边佳辉刘自扬李宗英赵媛媛唐益雄孙占敏吕嘉卫张金林吴燕民 . 紫花苜蓿基因工程改良研究进展. 草业科学, 2020, 37(1): 139-155. doi:  BG视讯

    6. [6]

      徐畅何好李国良金淑梅 . 水稻金属硫蛋白基因(rgMT)遗传转化的紫花苜蓿耐盐性分析. 草业科学, 2018, 12(4): 829-838. doi: 

    7. [7]

       紫花苜蓿bZIP基因家族的鉴定、进化及表达分析. 草业科学, 2017, 11(8): 1635-1648. doi: 

    8. [8]

      张亚玲张攀尹航王洋孙杰吴清莹付佳琦崔国文 . 紫花苜蓿9个盐响应相关基因表达模式. 草业科学, 2018, 12(5): 1057-1066. doi: 

    9. [9]

      桂枝肖婷皮永硕袁庆华杨建翔刘妍高建明 . 紫花苜蓿PGIP同源基因克隆与序列核苷酸多态性分析. 草业科学, 2015, 9(10): 1603-1611. doi:  BG视讯

    10. [10]

      林子然张英俊 . 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响. 草业科学, 2018, 12(1): 115-122. doi: 

    11. [11]

      蒋文博陈钊曹新龙牛军鹏郭志鹏崔健王佺珍 . 外源NO对盐胁迫下紫花苜蓿生长及膜脂过氧化的影响. 草业科学, 2019, 36(10): 2580-2593. doi: 

    12. [12]

      马婷燕李彦忠 . 外源甜菜碱对NaCl胁迫下紫花苜蓿种子萌发及幼苗抗性的影响. 草业科学, 2019, 36(12): 3100-3110. doi: 

    13. [13]

      高润柳茜闫亚飞李峰陶雅孙启忠张仲鹃 . 河套灌区23个紫花苜蓿品种适应性. 草业科学, 2017, 11(6): 1286-1298. doi: 

    14. [14]

      陈菲穆麟文昭竹张志飞魏仲珊 . 洞庭湖区不同品种紫花苜蓿的混播效应. 草业科学, 2018, 12(7): 1734-1742. doi: 

    15. [15]

      张志飞斯达孙系巍穆麟赵红凯李志才魏仲珊 . 洞庭湖区5个紫花苜蓿品种高温期刈割后的表现. 草业科学, 2017, 11(7): 1469-1474. doi: 

    16. [16]

      薛春胜刘瑞生徐建峰张金林 . 不同添加剂对陇东紫花苜蓿青贮品质的影响. 草业科学, 2018, 12(2): 456-462. doi: 

    17. [17]

      王洋崔国文尹航杨柳张亚玲闫得朋巩林 . 施肥对紫花苜蓿生产性能及营养品质的影响. 草业科学, 2019, 36(3): 793-803. doi: 

    18. [18]

      罗雯王丹边佳辉孙占敏唐益雄吴燕民 . 紫花苜蓿的皂苷研究. 草业科学, 2019, 36(1): 261-272. doi:  BG视讯

    19. [19]

      马超然何树斌白雪纯王涛张君红冯魁亮夏宇康 . 套种紫花苜蓿对玉米根际土壤碳、氮、磷及真菌群落的影响. 草业科学, 2020, 37(1): 20-29. doi: 

    20. [20]

      潘佳李荣郭耘欣胡小文 . 紫花苜蓿种子活力测定方法的比较. 草业科学, 2017, 11(5): 1042-1048. doi: 

  • BG视讯

    图 1  注释到COG数据库的基因数目

    Figure 1.  BG视讯 Notes the number of genes in the COG database

    图 2  注释到KEGG数据库的基因数目

    Figure 2.  BG视讯 Notes the number of genes in the KEGG database

    图 3  注释到GO数据库的基因数目

    Figure 3.  Notes the number of genes in the GO database

    图 4  实时荧光定量PCR

    Figure 4.  Real-time PCR

    表 1  功能基因长度以及数量

    Table 1.  BG视讯 Functional gene length and quantity

    功能基因长度
    Unigene length/nt
    总计数量
    Total number
    所占比例
    Percentage/%
    200~300 37 212 37.21
    300~500 25 105 25.10
    500~1 000 18 814 18.81
    1 000~2 000 12 579 12.58
    ≥ 2 000 6 297 6.30
    下载: 导出CSV

    表 2  差异表达基因的功能注释结果

    Table 2.  Functional annotation results of differentially expressed genes

    注释数据库#
    Anno_database
    注释数量
    Annotated_
    number
    300 nt ≤ 长度 < 1 000 nt
    300 nt ≤ Length < 1 000 nt
    长度 ≥ 1 000 nt
    Length ≥ 1 000 nt
    COG_Annotation 696 5 775 6 738
    GO_Annotation 2 162 17 088 13 497
    KEGG_
    Annotation
    448 7 907 6 637
    下载: 导出CSV

    表 3  差异表达基因列表

    Table 3.  BG视讯 List of differentially expressed genes

    Unigene名
    Unigene ID
    C96_FPKM Pb96_FPKM 比值
    log2 ratio
    基因功能 Gene function
    c54782.graph_c0 198.69 106.15 –1.063 744 420 水解酶活性,果糖 – 二磷酸醛缩酶活性
    Hydrolase activity, fructose–diphosphate aldolase activity
    c40437.graph_c1 18.97 6.65 –1.633 536 014 糖酵解过程,水解酶活性,作用于线性脒中的碳–氮(但不是肽)键、金属离子结合
    The glycolysis process,hydrolase activity,acts on carbon–nitrogen (but not peptide)
    bonds in linear ruthenium and metal ion binding
    c43992.graph_c0 2.22 0.13 –3.631 184 694 蛋白质丝氨酸/苏氨酸激酶活性,ATP结合,蛋白质磷酸化,膜的整体成分,多糖结合
    Protein serine/threonine kinase activity,ATP binding,protein phosphorylation,
    integral components of the membrane,polysaccharide binding
    c60665.graph_c0 6 0.25 –3.625 456 588 氨基酸跨膜转运,氨基酸跨膜转运蛋白活性,膜的整体成分
    Amino acid transmembrane transport,amino acid transmembrane transporter activity,integral component of the membrane
    c40907.graph_c0 1.91 0.08 –3.625 456 588 RNA结合,核糖体的结构成分,胞质大核糖体亚基
    RNA binding,structural components of ribosomes,cytoplasmic large ribosomal subunits
    c33811.graph_c0 2.99 0.14 –3.558 283 180 营养物储存活动 Nutrient storage activities
    c31694.graph_c0 0.87 0.04 –3.558 283 18 核小体组装 Nucleosome assembly
    c30984.graph_c0 1.26 0.05 –3.558 283 180 核糖体大亚基组装,核糖体的结构成分,胞质大核糖体亚基
    Ribosome large subunit assembly,structural components of ribosomes,cytoplasmic large ribosomal subunits
    c35500.graph_c0 3.32 0.23 –3.451 240 956 植物型液泡膜,膜的整体成分,底物特异性跨膜转运蛋白活性,跨膜转运
    Plant-type tonoplast,membrane integral component,substrate-specific transmembrane transporter activity,transmembrane transport
    c44638.graph_c0 0.74 0.07 –2.952 599 924 质膜的组成成分,植物型液泡膜,细胞水稳态,水通道活动,离子跨膜转运,中央液泡
    Plasma membrane components,plant-type tonoplast,cell water homeostasis,water channel activity,ion transmembrane transport,central vacuole
    c44469.graph_c0 4.5 0.71 –2.693 656 264 乙酸–辅酶A连接酶活性,醋酸代谢过程,乙醛酸循环,丁酸盐代谢过程,丁酸–CoA连接酶活性
    Acetic acid - Coenzyme A ligase activity,acetic acid metabolism,glyoxylate cycle,
    butyrate metabolism,butyrate–CoA ligase activity
    c40295.graph_c0 3.07 0.79 –1.961 616 956 水解酶活性,水解O-糖基化合物,碳水化合物代谢过程,膜的整体成分
    Hydrolase activity,hydrolysis of O-glycosyl compounds,carbohydrate metabolism,
    overall composition of the membrane
    下载: 导出CSV
    BG视讯

                      <dfn id='61m6n'><optgroup id='61m6n'></optgroup></dfn><tfoot id='61m6n'><bdo id='61m6n'><div id='61m6n'></div><i id='61m6n'><dt id='61m6n'></dt></i></bdo></tfoot>

                      <ul id='61m6n'></ul>

                      • 加载中
                      • 图(4)表(3)
                        计量
                        • PDF下载量:  19
                        • 文章访问数:  197
                        • HTML全文浏览量:  159
                        文章相关
                        • 通讯作者:  徐博,
                        • 收稿日期:  2018-12-11
                        • 刊出日期:  2019-10-01
                        通讯作者: 陈斌,
                        • 1. 

                          BG视讯shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

                        1. 本站搜索
                        2. 百度学术搜索
                        3. 万方数据库搜索
                        4. CNKI搜索

                        /

                        返回文章
                        BG视讯