BG视讯

欢迎访问 草业科学,今天是

zhiwuacbpjiazuchengyuangongnengyanjiujinzhan

王思竹 张洵 戴绍军 李莹

引用本文: 王思竹,张洵,戴绍军,李莹. 植物ACBP家族成员功能研究进展. 草业科学, 2019, 36(10): 2535-2548. doi: shu
Citation:  WANG S Z, ZHANG X, DAI S J, LI Y. Advances in research regarding the function of the ACBP family in plants. Pratacultural Science, 2019, 36(10): 2535-2548. doi: shu

植物ACBP家族成员功能研究进展

    作者简介: 王思竹(1994-),女,黑龙江哈尔滨人,在读硕士生,主要从事盐生牧草抗逆分析机理研究。E-mail: ;
    通讯作者: 戴绍军, 李莹,
  • 基金项目: 中央高校基本科研业务专项资金(2572018BS03、2572017ET01)

摘要: 酰基辅酶A结合蛋白(Acyl-CoA-binding proteins,ACBPs)是脂类载体蛋白,具有结合和运输脂类物质的功能,在植物生长发育和逆境(低温、干旱和重金属)应答调控过程中发挥了重要作用。本文综述了植物ACBP家族成员的分类、结构特征、生理功能,及其在逆境应答过程中的作用,为深入认识植物ACBP基因家族成员提供了重要信息。

English

    1. [1]

      HURLOCK A K, ROSTON R L, WANG K, BENNING C.  Lipid trafficking in plant cells[J]. Traffic, 2014, 15(9): 915-932. doi:

    2. [2]

      GUIDOTTI A, FORCHETTI C M, CORDA M G, KONKEL D, BENNETT C D, COSTA E.  Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(11): 3531-3535. doi:

    3. [3]

      HILLS M J, DANN R, LYDIATE D, SHARPE A.  Molecular cloning of a cDNA from Brassica napus L. for a homologue of acyl-coA-binding protein[J]. Plant Molecular Biology, 1994, 25(5): 917-920. doi:

    4. [4]

      MENG W, SU Y C, SAUNDERS R M, CHYE M L.  The rice acyl-coA-binding protein gene family phylogeny, expression and functional analysis[J]. New Phytologist, 2011, 189(4): 1170-1184. doi:

    5. [5]

      RABOANATAHIRY N, WANG B S, YU L J, LI M T.  Functional and structural diversity of acyl-coA binding proteins in oil crops[J]. Frontiers in Genetics, 2018, 9(): 182-. doi:

    6. [6]

      DU Z Y, ARIAS T, MENG W, CHYE M L.  Plant acyl-coA-binding proteins:An emerging family involved in plant development and stress responses[J]. Progress in Lipid Research, 2016, 63(): 165-181. doi:

    7. [7]

      NIE Z Y, WANG Y H, WU C T, LI Y, KANG G J, QIN H D, ZENG R Z.  Acyl-coA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree)[J]. BMC Genomics, 2018, 19(1): 5-. doi:

    8. [8]

      LEUNG K C, LI H Y, MISHRA G, CHYE M L.  ACBP4 and ACBP5, novel Arabidopsis acyl-coA-binding proteins with kelch motifs that bind oleoyl-coA[J]. Plant Molecular Biology, 2004, 55(2): 297-309. doi:

    9. [9]

      SASAKI Y, NAGANO Y.  Plant acetyl-CoA carboxylase:tructure, biosynthesis, regulation, and gene manipulation for plant breeding[J]. Bioscience Biotechnology and Biochemistry, 2004, 68(6): 1175-1184. doi:

    10. [10]

      ADAMS J, KELSO R, COOLEY L.  The kelch repeat superfamily of proteins: Propellers of cell function[J]. Trends in Cell Biology, 2000, 10(1): 17-24. doi:

    11. [11]

      GARNIER J, GIBRAT J F, ROBSON B.  GOR method for predicting protein secondary structure from amino acid sequence[J]. Methods in Enzymology, 1996, 266(): 540-553. doi:

    12. [12]

      BURTON M, ROSE T M, FAERGEMAN N J, KNUDSEN J.  Evolution of the acyl-CoA binding protein (ACBP)[J]. The Biochemical Journal, 2005, 392(Pt 2): 299-307.

    13. [13]

      KELLEY L A, MEZULIS S, YATES C M, WASS M N, STERNBERG M J.  The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nature Protocols, 2015, 10(6): 845-858. doi:

    14. [14]

      COMBET C, BLANCHET C, GEOURJON C, DELEAGE G.  NPS@:network protein sequence analysis[J]. Trends in Biochemical Sciences, 2000, 25(3): 147-150. doi:

    15. [15]

      LETUNIC I, DOERKS T, BORK P.  SMART: Recent updates, new developments and status in 2015[J]. Nucleic Acids Research, 2015, 43(Database issue): 257-260.

    16. [16]

      CHYE M L, LI H Y, YUNG M H.  Single amino acid substitutions at the acyl-coA-binding domain interrupt 14[C]palmitoyl-coA binding of ACBP2, an Arabidopsis acyl-coA-binding protein with ankyrin repeats[J]. Plant Molecular Biology, 2000, 44(6): 711-721. doi:

    17. [17]

      LEUNG K C, LI H Y, XIAO S, TSE M H, CHYE M L.  Arabidopsis ACBP3 is an extracellularly targeted acyl-coA-binding protein[J]. Planta, 2006, 223(5): 871-881. doi:

    18. [18]

      GAO W, XIAO S, LI H Y, TSAO S W, CHYE M L.  Arabidopsis thaliana acyl-coA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6[J]. New Phytologist, 2009, 181(1): 89-102. doi:

    19. [19]

      XIAO S, GAO W, CHEN Q F, CHAN S W, ZHENG S X, MA J Y, WANG M F, WELTI R, CHYE M L.  Overexpression of Arabidopsis acyl-coA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence[J]. Plant Cell, 2010, 22(5): 1463-1482. doi:

    20. [20]

      WANG X.  Lipid signaling[J]. Current Opinion in Plant Biology, 2004, 7(3): 329-336. doi:

    21. [21]

      ZHOU Y, ATKINS J B, ROMPANI S B, BANCESCU D L, PETERSEN P H, TANG H, ZOU K, STEWART S B, ZHONG W.  The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis[J]. Cell, 2007, 129(1): 163-178. doi:

    22. [22]

      WALZ C, GIAVALISCO P, SCHAD M, JUENGER M, KLOSE J, KEHR J.  Proteomics of curcurbit phloem exudate reveals a network of defence proteins[J]. Phytochemistry, 2004, 65(12): 1795-1804. doi:

    23. [23]

      YOSHIMOTO K, JIKUMARU Y, KAMIYA Y, KUSANO M, CONSONNI C, PANSTRUGA R, OHSUMI Y, SHIRASU K.  Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis[J]. Plant Cell, 2009, 21(9): 2914-2927. doi:

    24. [24]

      CHEN Q F, XIAO S, QI W, MISHRA G, MA J, WANG M, CHYE M L.  The Arabidopsis acbp1acbp2 double mutant lacking acyl-coA-binding proteins ACBP1 and ACBP2 is embryolethal[J]. New Phytol, 2010, 186(4): 843-855. doi:

    25. [25]

      XIAO S, GAO W, CHEN Q F, RAMALINGAM S, CHYE M L.  Overexpression of membrane-associated acyl-coA-binding protein ACBP1 enhances lead tolerance in Arabidopsis[J]. Plant Journal, 2008, 54(1): 141-151. doi:

    26. [26]

      MANJITHAYA R, ANJARD C, LOOMIS W F, SUBRAMANI S.  Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation[J]. Journal of Cell Biology, 2010, 188(4): 537-546. doi:

    27. [27]

      GAO W, LI H Y, XIAO S, CHYE M L.  Acyl-coA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis[J]. Plant Journal, 2010, 62(6): 989-1003.

    28. [28]

      XIAO S, CHEN Q F, CHYE M L.  Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-coA-binding proteins that bind phosphatidylcholine and oleoyl-coA ester[J]. Plant Physiology and Biochemistry, 2009, 47(10): 926-933. doi:

    29. [29]

      CHEN Q F, XIAO S, CHYE M L.  Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance[J]. Plant Physiollogist, 2008, 148(1): 304-315. doi:

    30. [30]

      DU ZY, XIAO S, CHEN Q F, CHYE M L.  Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis[J]. Plant Physiologist, 2010, 152(3): 1585-1597. doi:

    31. [31]

      LI H Y, CHYE M L.  Membrane localization of Arabidopsis acyl-coA binding protein ACBP2[J]. Plant Molecular Biology, 2003, 51(4): 483-492. doi:

    32. [32]

      LI H Y, CHYE M L.  Arabidopsis acyl-coA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats[J]. Plant Molecular Biology, 2004, 54(2): 233-243. doi:

    33. [33]

      MENG W, HSIAO A S, GAO C, JIANG L, CHYE M L.  Subcellular localization of rice acyl-coA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes[J]. New Phytologist, 2014, 203(2): 469-482. doi:

    34. [34]

      乔坤.极端耐NaHCO3微藻的鉴定及ACBP抗逆机制研究.哈尔滨: 东北林业大学博士学位论文, 2015.
      QIAO K.Identification of novel highly tolerant NaHCO3 microalgae and the role for acyl-coA-binding protein (ACBP) under stress tolerance.Harbin: Northeast Forestry University, 2015.

    35. [35]

      XIAO S, CHYE M L.  An Arabidopsis family of six acyl-coA-binding proteins has three cytosolic members[J]. Plant Physiology and Biochemistry, 2009, 47(6): 479-484. doi:

    36. [36]

      AZNAR-MORENO JA, VENEGAS-CALERON M, DU Z Y, TANNER J A, CHYE M L, MARTINEZ-FORCE E, SALAS J J.  Characterization of a small acyl-coA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities[J]. Plant Physiology and Biochemistry, 2016, 102(): 141-150. doi:

    37. [37]

      DU Z Y, CHEN M X, CHEN Q F, XIAO S, CHYE M L.  Arabidopsis acyl-coA-binding protein ACBP1 participates in the regulation of seed germination and seedling development[J]. Plant Journal, 2013, 74(2): 294-309. doi:

    38. [38]

      XUE Y, XIAO S, KIM J, LUNG S C, CHEN L, TANNER J A, SUH M C, CHYE M L.  Arabidopsis membrane-associated acyl-coA-binding protein ACBP1 is involved in stem cuticle formation[J]. Journal of Experimental Botany, 2014, 65(18): 5473-5483. doi:

    39. [39]

      ZIMMERMANN P, HIRSCH-HOFFMANN M, HENNIG L, GRUISSEM W.  GENEVE- STIGATOR. Arabidopsis microarray database and analysis toolbox[J]. Plant Physiology, 2004, 136(1): 2621-2632. doi:

    40. [40]

      DU Z Y, CHEN M X, CHEN Q F, XIAO S, CHYE M L.  Overexpression of Arabidopsis acyl-coA-binding protein ACBP2 enhances drought tolerance[J]. Plant Cell and Environment, 2013, 36(2): 300-314. doi:

    41. [41]

      ZHENG S X, XIAO S, CHYE M L.  The gene encoding Arabidopsis acyl-coA-binding protein 3 is pathogen inducible and subject to circadian regulation[J]. Journal Experimental Botany, 2012, 63(8): 2985-3000. doi:

    42. [42]

      LI H Y, XIAO S, CHYE M L.  Ethylene- and pathogen-inducible Arabidopsis acyl-coA-binding protein 4 interacts with an ethylene-responsive element binding protein[J]. Journal of Experimental Botany, 2008, 59(14): 3997-4006. doi:

    43. [43]

      HSIAO A S, YEUNG E C, YE Z W, CHYE M L.  The Arabidopsis cytosolic acyl-coA-binding proteins play combinatory roles in pollen development[J]. Plant and Cell Physiology, 2015, 56(2): 322-333. doi:

    44. [44]

      XIAO S, LI H Y, ZHANG J P, CHAN S W, CHYE M L.  Arabidopsis acyl-coA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition[J]. Plant Molecular Biology, 2008, 68(6): 571-583. doi:

    45. [45]

      XIA Y, YU K, GAO Q M, WILSON E V, NAVARRE D, KACHROO P, KACHROO A.  Acyl coA binding proteins are required for cuticle formation and plant responses to microbes[J]. Frontiers in Plant Science, 2012, 3(): 224-.

    46. [46]

      JAIN M, NIJHAWAN A, ARORA R, AGARWAL P, RAY S, SHARMA P, KAPOOR S, TYAGI A K, KHURANA J P.  F-box proteins in rice.Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant Physiology, 2007, 143(4): 1467-1483. doi:

    47. [47]

      秦朋飞.棉花酰基辅酶A结合蛋白家族基因的发掘及在非生物胁迫抗性中的功能鉴定.南京:南京农业大学硕士学位论文, 2016.
      QIN P F.Genome-wide identification of acyl-coA-binding protein (ACBP) gene family and their functional analysis in abiotic stress resistance in cotton.Nanjing: Nanjing Agricultural University, 2016.

    48. [48]

      PASTOR S, SETHUMADHAVAN K, ULLAH A H, GIDDA S, CAO H, MASON C, CHAPITAL D, SCHEFFLER B, MULLEN R, DYER J, SHOCKEY J.  Molecular properties of the class Ⅲ subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii)[J]. Plant Science, 2013, 203/204(): 79-88. doi:

    49. [49]

      文锦芬, 龚明, 陈凯, 段小凡, 齐亚峰, 王欣欣, 辛艳, 邓明华.  小桐子JcACBP基因克隆和序列分析[J]. 西北植物学报, 2014, 34(11): 2159-2164. doi:
      WEN J F, GONG M, CHEN K, DUAN X F, QI Y F, WANG X X, XIN Y, DENG M H.  Cloning and expression analysis of a new acyl-coA-binding protein (JcACBP) identified from Jatropha curcas L[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(11): 2159-2164. doi:

    50. [50]

      NAPIER J A, HASLAM R P.  As simple as ACB-new insights into the role of acyl-coA-binding proteins in Arabidopsis[J]. New Phytologist, 2010, 186(4): 781-783. doi:

    51. [51]

      WELTI R, LI W, LI M, SANG Y, BIESIADA H, ZHOU H E, RAJASHEKAR C B, WILLIAMS T D, WANG X.  Profiling membrane lipids in plant stress responses.Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis[J]. The Journal of Biological Chemistry, 2002, 277(35): 31994-32002. doi:

    52. [52]

      DEVAIAH S P, ROTH M R, BAUGHMAN E, LI M, TAMURA P, JEANNOTTE R, WELTI R, WANG X.  Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant[J]. Phytochemistry, 2006, 67(17): 1907-1924. doi:

    53. [53]

      RADOJKOVIC D, KUSIC J J.  Silver staining of denaturing gradient gel electrophoresis gels[J]. Clinical Chemistry, 2000, 46(1): 883-884.

    54. [54]

      DU Z Y, CHEN M X, CHEN Q F, GU J D, CHYE M L.  Expression of Arabidopsis acyl-coA-binding proteins AtACBP1 and AtACBP4 confers Pb(Ⅱ) accumulation in Brassica juncea roots[J]. Plant Cell and Environment, 2015, 38(1): 101-117. doi:

    55. [55]

      SHOYAB M, GENTRY L E, MARQUARDT H, TODARO G J.  Isolation and characterization of a putative endogenous benzodiazepineoid (endozepine) from bovine and human brain[J]. The Journal of Biological ChemistryBG视讯, 1986, 261(26): 11968-11973.

    56. [56]

      SAEZ A, APOSTOLOVA N, GONZALEZ-GUZMAN M, GONZALEZ-GARCIA MP, NICOLAS C, LORENZO O, RODRIGUEZ P L.  Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 revealits roleasa negative regulator of abscisic acid signalling[J]. Plant Journal, 2004, 37(3): 354-369. doi:

    57. [57]

      KWAK J M, MORI I C, PEI Z M, LEONHARDT N, TORRES M A, DANGL J L, BLOOM R E, BODDE S, JONES J D, SCHROEDER J I.  NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. EMBO Journal, 2003, 22(11): 2623-1633. doi:

    58. [58]

      MICHAELY P, BENNETT V.  The ANK repeat:a ubiquitous motif involved in macromolecular recognition[J]. Trends in Cell Biology, 1992, 2(5): 127-129. doi:

    59. [59]

      LICAUSI F, KOSMACZ M, WEITS D A, GIUNTOLI B, GIORGI F M, VOESENEK L A, PERATA P, VAN DONGEN J T.  Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization[J]. Nature, 2011, 479(): 419-422. doi:

    60. [60]

      GIBBS D J, LEE S C, ISA N M, GRAMUGLIA S, FUKAO T, BASSEL G W, CORREIA C S, CORBINEAU F, THEODOULOU F L, BAILEY-SERRES J, HOLDSWORTH M J.  Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants[J]. Nature, 2011, 479(): 415-418. doi:

    61. [61]

      KOSMACZ M, PARLANTI S, SCHWARZLÄNDER M, KRAGLER F, LICAUSI F, VAN DONGEN J T.  The stability and nuclear localization of the transcription factor RAP2.12 are dynamically regulated by oxygen concentration[J]. Plant Cell Environment, 2015, 38(6): 1094-1103. doi:

    62. [62]

      XIE L J, YU L J, CHEN Q F, WANG F Z, HUANG L, XIA F N, ZHU T R, WU J X, YIN J, LIAO B, YAO N, SHU W, XIAO S.  Arabidopsis acyl-coA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism[J]. Plant Journal, 2015, 81(1): 53-67. doi:

    63. [63]

      LIAO P, CHEN Q F, CHYE M L.  Transgenic Arabidopsis flowers overexpressing acyl-coA-binding protein ACBP6 are freezing tolerant[J]. Plant and Cell Physiology, 2014, 55(6): 1055-1071. doi:

    64. [64]

      XIAO S, CHYE M L.  Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000[J]. Plant Physiologist, 2011, 156(4): 2069-2081. doi:

    65. [65]

      LENZ H D, HALLER E, MELZER E, KOBER K, WURSTER K, STAHL M, BASSHAM D C, VIERSTRA R D, PARKER J E, BAUTOR J, MOLINA A, ESCUDERO V, SHINDO T, VAN DER HOORN R A, GUST A A, NUERNBERGER T.  Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens[J]. Plant Journal, 2011, 66(5): 818-830. doi:

    66. [66]

      LIU Y, SCHIFF M, CZYMMEK K, TALLOCZY Z, LEVINE B, DINESH-KUMAR S R.  Autophagy regulates programmed cell death during the plant innate immune response[J]. Cell, 2005, 121(4): 567-577. doi:

    67. [67]

      LAI Z, WANG F, ZHENG Z, FAN B, CHEN Z.  A critical role of autophagy in plant resistance to necrotrophic fungal pathogens[J]. Plant Journal, 2011, 66(6): 953-968. doi:

    1. [1]

      刘博欣赵杨敏庞俊峰孙占敏尉亚辉吴燕民 . 秋茄 ERF 抗逆转录因子的克隆及其功能分析. 草业科学, 2013, 7(11): 1740-1748.

    2. [2]

      刘敏国杨倩杨梅杨惠敏 . 藜麦的饲用潜力及适应性. 草业科学, 2017, 11(6): 1264-1271. doi:  BG视讯

    3. [3]

      徐大伟陈宝瑞辛晓平 . 气候变化对草原影响的评估指标及方法研究进展. 草业科学, 2014, 8(11): 2183-2190. doi: 

    4. [4]

      陈思慧徐华黄非周功克柴国华董国清 . 草本植物半纤维素研究进展. 草业科学, 2020, 37(3): 506-513. doi:  BG视讯

    5. [5]

      马 清王锁民BG视讯 . 多浆旱生植物霸王质膜Na╋/H╋逆向转运蛋白基因RNAi载体构建. 草业科学, 2012, 6(4): 549-553.

    6. [6]

      路子峰张超李彦忠 . 林烟草8个防卫反应信号蛋白编码基因的克隆及RNAi植物表达载体的构建. 草业科学, 2014, 8(7): 1275-1282. doi:  BG视讯

    7. [7]

      占今舜詹康陈小连霍俊宏赵国琦 . 苜蓿素对脂多糖诱导下奶牛乳腺上皮细胞炎症和乳蛋白合成相关基因表达的影响. 草业科学, 2018, 12(2): 441-448. doi: 

    8. [8]

      尚明娟曹骏常智慧 . 污泥对草坪草逆境生理的影响. 草业科学, 2017, 11(8): 1591-1600. doi: 

    9. [9]

      李金博李诗刚徐义炎吴燕民BG视讯 . 白三叶基因工程及逆境生理研究进展. 草业科学, 2013, 7(11): 1842-1851.

    10. [10]

      刘文献刘志鹏谢文刚王彦荣 . 脂肪酸及其衍生物对植物逆境胁迫的响应. 草业科学, 2014, 8(8): 1556-1565. doi: 

    11. [11]

       zhiwuvh+atpmeishiyingnijingdefenzidiaokongjili . caoyekexue, 2013, 7(2): 245-252.

    12. [12]

      刘旻霞马建祖 . 种植物在逆境胁迫下脯氨酸的累积特点研究. 草业科学, 2010, 4(4): 134-138.

    13. [13]

      产祝龙张慧刘梦垚 . 植物生长调节物质与草坪草及牧草的非生物逆境应答. 草业科学, 2019, 36(12): 3007-3023. doi: 

    14. [14]

       muxuzonghuangtongduixiaoshuzhileidaixiejiyangziyoujideyingxiang. caoyekexue, 2009, 3(8): 93-96.

    15. [15]

      李瑞琴于安芬??蓉徐美蓉宋政平赵有彪??洁BG视讯 . 苜蓿蛋白质分组测定初探. 草业科学, 2009, 3(5): 99-102.

    16. [16]

      毛培胜陈泉竹毛培胜 . 种子热激蛋白研究进展. 草业科学, 2016, 10(1): 136-143. doi: 

    17. [17]

      高丽杨海莉王沛王锁民 . 木栓质及其生理功能. 草业科学, 2018, 12(5): 1218-1231. doi:  BG视讯

    18. [18]

      BG视讯  caodanbaidoufudeyingyangjiazhiyanjiu. caoyekexue, 2009, 3(8): 47-51.

    19. [19]

      BG视讯  jianyehuzhizizhongzizhuzangdanbaifenxi. caoyekexue, 2012, 6(9): 1384-1389.

    20. [20]

      惠文森穆晓峰王康英BG视讯 . 草坪草屑叶蛋白质提取方法研究. 草业科学, 2009, 3(3): 108-110.

  • BG视讯

    图 1  拟南芥和水稻ACBPs的结构示意图

    Figure 1.  Schematic domain structures of the Arabidopsis thaliana and Oryza sativa ACBPs

    图 2  拟南芥和水稻酰基辅酶A结合蛋白在植物发育各个阶段的表达

    Figure 2.  BG视讯 The expression of Arabidopsis acyl-CoA-binding proteins at various stages of plant development

    表 1  BG视讯 不同植物中酰基辅酶A结合蛋白(ACBP)家族的组成

    Table 1.  The acyl-CoA-binding protein (ACBP) family in various plants

    植物名称 Plant name亚家族 Subfamily总计 Total参考文献 Reference
    0
    莱茵衣藻 Chlamydomonas reinhardtii101103[4]
    鞭毛藻 Ostreococcus lucimarinus100124[4]
    小立碗藓 Physcomitrella patens230218[4]
    卷柏 Selaginella moellendorffii120126[4]
    西加云杉 Picea stichensis110114[4]
    水稻 Oryza sativa311106[4]
    高粱 Sorghum bicolor211105[4]
    玉米 Zea mays211105[5]
    陆地棉 Gossypium hirsutum22128024[4-5]
    拟南芥 Arabidopsis thaliana121206[4]
    大豆 Glycine max2243011[5]
    蒺藜苜蓿 Medicago truncatula110103[4]
    蓖麻 Ricinus communis111104[5]
    可可 Theobroma cacao111104[6]
    向日葵 Helianthus annuus2233010[5]
    白菜 Brassica rapa3287020[5]
    欧洲油菜 Brassica napus671616045[5]
    甘蓝 Brassica oleracea3287020[5]
    油桐 Vernicia fordii101103[5]
    木瓜 Carica papaya111104[4]
    黄瓜 Cucumis sativus111104[4]
    葡萄 Vitis vinifera212106[4]
    小桐子 Jatropha curcas212106[5]
    毛果杨 Populus trichocarpa222107[4]
    胡杨 Populus euphratica122207[4]
    油橄榄 Olea europaea221409[5]
    巴西橡胶树 Hevea brasiliensis112206[7]
    下载: 导出CSV

    表 2  12种植物ACBPs蛋白质模型分类

    Table 2.  Classification of twelve plants ACBPs protein models

    模型名称
    Model name
    3D 模型
    3D structure
    结构组成
    Structure and composition
    植物名称
    Plant name
    Class Ⅰ
    S14个α-螺旋;ACB: 3个α螺旋 Four alpha-helices; ACB:three alpha-helices拟南芥 A. thaliana、欧洲油菜 B. napus
    甘蓝 B. oleracea、陆地棉 G. hirsutum
    S24个紧凑α-螺旋;ACB: 4个α-螺旋 Four closer alpha-helices; ACB:four alpha-helices白菜 B. rapa、向日葵 H. annuus、小桐子
    J. curas、欧洲醡浆草 O. europeae、油桐
    V. fordii、玉米 Z. mays
    S35个紧凑α-螺旋;ACB: 5个α-螺旋 Five closer alpha-helices; ACB:five alpha-helices水稻 O. sativa
    Class Ⅱ
    A14个α-螺旋及少量β-折叠;ACB: 3个α-螺旋;ANK: 1个α-螺旋
    Four alpha-helices and a few beta-sheets; ACB:three alpha-helices; ANK:one alpha-helix
    水稻 O. sativa
    A25个α-螺旋及少量β-折叠;ACB: 4个α-螺旋;ANK: 1个α-螺旋
    Five alpha-helices and a few beta-sheets; ACB:four alpha-helices; ANK:one alpha-helix
    玉米 Z. mays
    A35个α-螺旋及少量β-折叠;ACB: 3个α-螺旋;ANK: 1个α-螺旋;Unknown domain: 1个α-螺旋
    Five alpha-helices and a few beta-sheets; ACB:three alpha-helices; ANK:one alpha-helix;
    Unknown domain: one alpha-helix
    拟南芥 A. thaliana
    A46个α-螺旋及少量β-折叠;ACB: 5个α-螺旋;ANK: 1个α-螺旋
    Six alpha-helices and a few beta-sheets; ACB:five alpha-helices; ANK:one alpha-helix
    白菜 B. rapa、欧洲醡浆草 O. europeae
    A517个α-螺旋及少量β-折叠;ACB: 9个α-螺旋;ANK: 8个α-螺旋
    Seventeen alpha-helices and a few beta-sheets; ACB:nine alpha-helices; ANK:eight alpha-helices
    欧洲油菜 B. napus
    A619个α-螺旋及少量β-折叠;ACB: 4个α-螺旋;ANK: 6个α-螺旋;Unknown domain1:
    1个α-螺旋;Unknown domain2: 8个α-螺旋
    Nineteen alpha-helices and a few beta-sheets; ACB:four alpha-helices; ANK: six alpha-helices;
    Unknown domain1: one alpha-helix; Unknown domain1: eight alpha-helices
    大豆 G. max
    A717个α-螺旋及少量β-折叠;ACB: 3个α-螺旋;ANK: 7个α-螺旋;Unknown domain1: 2个α-螺旋;Unknown domain2: 5个α-螺旋Seventeen alpha-helices and a few beta-sheets; ACB:three alpha-helices; ANK:seven alpha-helices; Unknown domain1: two alpha-helices; Unknown domain2: five alpha-helices小桐子 J. curcas
    A818个α-螺旋及少量β-折叠;ACB: 3个α-螺旋;ANK: 7个α-螺旋;Unknown domain: 8个α-螺旋
    Eighteen alpha-helices and a few beta-sheets; ACB:three alpha-helices; ANK:seven alpha-helices;
    Unknown domain: eight alpha-helices
    陆地棉 G. hirsutum
    A916个α-螺旋及少量β-折叠;ACB: 4个α-螺旋;ANK: 7个α-螺旋;Unknown domain: 5个α-螺旋
    Sixteen alpha-helices and a few beta-sheets; ACB:four alpha-helices; ANK:seven alpha-helices;
    Unknown domain: five alpha-helixes
    甘蓝 B. oleracea、向日葵 H. annuus
    Class Ⅲ
    L14个α-螺旋;ACB: 4个α-螺旋Four alpha-helices; ACB:four alpha-helies拟南芥 A. thaliana、白菜 B. rapa、欧洲油菜 B. napus、甘蓝 B. oleracea、向日葵
    H. annuus、油桐 V. fordii、玉米 Z. mays
    L24个α-螺旋和部分氨基酸链;ACB: 4个α-螺旋
    Four alpha-helices and part of amino acid chain; ACB:four alpha-helices
    水稻 O. sativa、陆地棉 G. hirsutum、欧洲醡浆草 O. europeae、小桐子 J. curcas、大豆 G. max
    Class Ⅳ
    K1α-螺旋与β-折叠构成3个结构域;ACB: 1个结构域;Kelch: 2个结构域
    Alpha-helix and beta-sheet constitute three domains; ACB:one alpha-helix; Kelch:two alpha-helices;
    玉米 Z. mays
    K2α-螺旋与β-折叠构成5个结构域;ACB: 1个结构域;Kelch:
    3个结构域;Unknown domain: 1个结构域
    Alpha-helix and beta-sheet constitute five domains; ACB:one alpha-helix;
    Kelch:three alpha-helices; Unknown domain: one alpha-helix
    大豆 G. max
    K3α-螺旋与β-折叠构成4个结构域;ACB: 1个结构域;Kelch: 3个结构域
    Alpha-helix and beta-sheet constitute four domains; ACB:one alpha-helix; Kelch:three alpha-helixes
    拟南芥 A. thaliana、欧洲油菜 B. napus
    甘蓝 B. oleracea、陆地棉 G. hirsutum
    欧洲醡浆草 O. europeae、向日葵
    H. annuus、小桐子 J. curcas、水稻
    O. sativa、油桐 V. fordii
    K4α-螺旋与β-折叠构成5个结构域;ACB: 1个结构域(无β-折叠);
    Kelch: 3个结构域;Unknown domain: 1个结构域
    Alpha-helix and beta-sheet constitute five domains; ACB:one alpha-helix(no beta-sheet);
    Kelch:three alpha-helices; Unknown domain: one alpha-helix
    白菜 B. rapa
     应用Phyre2软件预测3D模型。粉红色为ACB结构域,A1–A9中蓝色为ANK结构域,灰色表示未知结构域。K1–K4中蓝色、棕色和绿色为kelch结构域,灰色表示未知结构域。
     The 3D model was predicted by using the Phyre2 software. Pink indicateds the ACB domain, blue in A1–A9 indicates the ANK domain, and gray indicates the unknown domain. In K11–K4, blue, brown, and green are kelch domains, and gray indicates an unknown domain.
    下载: 导出CSV

    表 3  拟南芥和水稻ACBPs与磷脂和酰基辅酶A酯的结合特征

    Table 3.  Binding characteristics of AtACBPs and OsACBPs with phospholipids and acyl-CoA ester

    蛋白质 Protein磷脂结合 Phospholipid binding酰基辅酶A酯的结合 Acyl-CoA ester binding参考文献 Reference
    Class Ⅰ
    AtACBP6PC(16:0/18:0/18:1/18:2)palmitoyl-CoA(16:0-CoA)
    oleoyl-CoA(18:1-CoA)
    [23,25,26,29]
    OsACBP1PA(18:0/18:1)
    PC(18:0/18:1/18:2)
    palmitoyl-CoA(16:0-CoA)
    oleoyl-CoA(18:0-CoA)
    oleoyl-CoA(18:1-CoA)
    linolenoyl-CoA(18:2-CoA)
    [4]
    OsACBP2PA(18:0/18:1)
    PC(18:0/18:1/18:2)
    linoleoyl-CoA(18:2-CoA)[4]
    OsACBP3PA(18:0/18:1)
    PC(18:0/18:1/18:2)
    linoleoyl-CoA(18:2-CoA)[4]
    Class Ⅱ
    AtACBP1PA(16:0/18:0/18:1)
    PC(18:1/18:2)
    palmitoyl-CoA(16:0-CoA)
    oleoyl-CoA(18:1-CoA)
    linoleoyl-CoA(18:2-CoA)
    linolenoyl-CoA(18:3-CoA)
    arachidonyl-CoA(20:4-CoA)
    [16-19,24-25,27]
    AtACBP2PC(18:1/18:2)
    lysolPC
    palmitoyl-CoA(16:0-CoA)
    oleoyl-CoA(18:1-CoA)
    linoleoyl-CoA(18:2-CoA)
    linolenoyl-CoA(18:3-CoA)
    arachidonyl-CoA(20:4-CoA)
    [16-19,24-25,27]
    OsACBP4PA(16:0/18:0/18:1)
    PC(18:0/18:1/18:2)
    palmitoyl-CoA(16:0-CoA)
    oleoyl-CoA(18:1-CoA)
    linoleoyl-CoA(18:2-CoA)
    [4]
    Class Ⅲ
    AtACBP3PE PC(18:0/18:1/18:2)linoleoyl-CoA(18:2-CoA)
    linolenoyl-CoA(18:3-CoA)
    arachidonyl-CoA(20:4-CoA)
    [19,20,24,30]
    OsACBP5PA(18:0/18:1)
    PC(18:0/18:1/18:2)
    palmitoyl-CoA(16:0-CoA)
    linoleoyl-CoA(18:2-CoA)
    [4]
    Class Ⅳ
    AtACBP4PC(18:1/18:2)palmitoyl-CoA(16:0-CoA)
    oleoyl-CoA(18:1-CoA)
    arachidonyl-CoA(20:4-CoA)
    [21-24,26,28]
    AtACBP5PC(18:1/18:2)palmitoyl-CoA(16:0-CoA)
    oleoyl-CoA(18:1-CoA)
    arachidonyl-CoA(20:4-CoA)
    [21-24,26,28]
    OsACBP6PA(18:0/18:1)
    PC(18:0/18:1/18:2)
    oleoyl-CoA(18:1-CoA)
    linoleoyl-CoA(18:2-CoA)
    [4]
     红色字代表强结合性,绿色字代表弱结合性。
     Red text indicates strong binding.Green text indicates word weak binding.
    下载: 导出CSV
    BG视讯
  • <tr id='50nnu'><strong id='50nnu'></strong><small id='50nnu'></small><button id='50nnu'></button><li id='50nnu'><noscript id='50nnu'><big id='50nnu'></big><dt id='50nnu'></dt></noscript></li></tr><ol id='50nnu'><option id='50nnu'><table id='50nnu'><blockquote id='50nnu'><tbody id='50nnu'></tbody></blockquote></table></option></ol><u id='50nnu'></u><kbd id='50nnu'><kbd id='50nnu'></kbd></kbd>

      <code id='50nnu'><strong id='50nnu'></strong></code>

      <fieldset id='50nnu'></fieldset>
            <span id='50nnu'></span>

                <ins id='50nnu'></ins>
                    <acronym id='50nnu'><em id='50nnu'></em><td id='50nnu'><div id='50nnu'></div></td></acronym><address id='50nnu'><big id='50nnu'><big id='50nnu'></big><legend id='50nnu'></legend></big></address>

                      <i id='50nnu'><div id='50nnu'><ins id='50nnu'></ins></div></i>
                      <i id='50nnu'></i>
                        • <dl id='50nnu'></dl>
                        • 加载中
                        • 图(2)表(3)
                          计量
                          • PDF下载量:  9
                          • 文章访问数:  278
                          • HTML全文浏览量:  178
                          文章相关
                          • 通讯作者:  戴绍军, 李莹,
                          • 收稿日期:  2018-12-10
                          • 刊出日期:  2019-10-01
                          通讯作者: 陈斌,
                          • 1. 

                            BG视讯shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

                          1. 本站搜索
                          2. 百度学术搜索
                          3. 万方数据库搜索
                          4. CNKI搜索

                          /

                          返回文章
                          BG视讯