植物名称 Plant name | 亚家族 Subfamily | 总计 Total | 参考文献 Reference | ||||
Ⅰ | Ⅱ | Ⅲ | Ⅳ | 0 | |||
莱茵衣藻 Chlamydomonas reinhardtii | 1 | 0 | 1 | 1 | 0 | 3 | [4] |
鞭毛藻 Ostreococcus lucimarinus | 1 | 0 | 0 | 1 | 2 | 4 | [4] |
小立碗藓 Physcomitrella patens | 2 | 3 | 0 | 2 | 1 | 8 | [4] |
卷柏 Selaginella moellendorffii | 1 | 2 | 0 | 1 | 2 | 6 | [4] |
西加云杉 Picea stichensis | 1 | 1 | 0 | 1 | 1 | 4 | [4] |
水稻 Oryza sativa | 3 | 1 | 1 | 1 | 0 | 6 | [4] |
高粱 Sorghum bicolor | 2 | 1 | 1 | 1 | 0 | 5 | [4] |
玉米 Zea mays | 2 | 1 | 1 | 1 | 0 | 5 | [5] |
陆地棉 Gossypium hirsutum | 2 | 2 | 12 | 8 | 0 | 24 | [4-5] |
拟南芥 Arabidopsis thaliana | 1 | 2 | 1 | 2 | 0 | 6 | [4] |
大豆 Glycine max | 2 | 2 | 4 | 3 | 0 | 11 | [5] |
蒺藜苜蓿 Medicago truncatula | 1 | 1 | 0 | 1 | 0 | 3 | [4] |
蓖麻 Ricinus communis | 1 | 1 | 1 | 1 | 0 | 4 | [5] |
可可 Theobroma cacao | 1 | 1 | 1 | 1 | 0 | 4 | [6] |
向日葵 Helianthus annuus | 2 | 2 | 3 | 3 | 0 | 10 | [5] |
白菜 Brassica rapa | 3 | 2 | 8 | 7 | 0 | 20 | [5] |
欧洲油菜 Brassica napus | 6 | 7 | 16 | 16 | 0 | 45 | [5] |
甘蓝 Brassica oleracea | 3 | 2 | 8 | 7 | 0 | 20 | [5] |
油桐 Vernicia fordii | 1 | 0 | 1 | 1 | 0 | 3 | [5] |
木瓜 Carica papaya | 1 | 1 | 1 | 1 | 0 | 4 | [4] |
黄瓜 Cucumis sativus | 1 | 1 | 1 | 1 | 0 | 4 | [4] |
葡萄 Vitis vinifera | 2 | 1 | 2 | 1 | 0 | 6 | [4] |
小桐子 Jatropha curcas | 2 | 1 | 2 | 1 | 0 | 6 | [5] |
毛果杨 Populus trichocarpa | 2 | 2 | 2 | 1 | 0 | 7 | [4] |
胡杨 Populus euphratica | 1 | 2 | 2 | 2 | 0 | 7 | [4] |
油橄榄 Olea europaea | 2 | 2 | 1 | 4 | 0 | 9 | [5] |
巴西橡胶树 Hevea brasiliensis | 1 | 1 | 2 | 2 | 0 | 6 | [7] |

Citation: WANG S Z, ZHANG X, DAI S J, LI Y. Advances in research regarding the function of the ACBP family in plants. Pratacultural Science, 2019, 36(10): 2535-2548. doi:

植物ACBP家族成员功能研究进展
English
Advances in research regarding the function of the ACBP family in plants
-
Key words:
- Acyl-CoA-binding proteins /
- lipid carrier protein /
- adversity /
- function
-
-
-
[1]
HURLOCK A K, ROSTON R L, WANG K, BENNING C. Lipid trafficking in plant cells[J]. TrafficTraffic, 2014, 15(9): 915-932. doi:
-
[2]
GUIDOTTI A, FORCHETTI C M, CORDA M G, KONKEL D, BENNETT C D, COSTA E. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors[J]. Proceedings of the National Academy of Sciences of the United States of AmericaProceedings of the National Academy of Sciences of the United States of America, 1983, 80(11): 3531-3535. doi:
-
[3]
HILLS M J, DANN R, LYDIATE D, SHARPE A. Molecular cloning of a cDNA from Brassica napus L. for a homologue of acyl-coA-binding protein[J]. Plant Molecular BiologyPlant Molecular Biology, 1994, 25(5): 917-920. doi:
-
[4]
MENG W, SU Y C, SAUNDERS R M, CHYE M L. The rice acyl-coA-binding protein gene family phylogeny, expression and functional analysis[J]. New PhytologistNew Phytologist, 2011, 189(4): 1170-1184. doi:
-
[5]
RABOANATAHIRY N, WANG B S, YU L J, LI M T. Functional and structural diversity of acyl-coA binding proteins in oil crops[J]. Frontiers in GeneticsFrontiers in Genetics, 2018, 9(): 182-. doi:
-
[6]
DU Z Y, ARIAS T, MENG W, CHYE M L. Plant acyl-coA-binding proteins:An emerging family involved in plant development and stress responses[J]. Progress in Lipid ResearchProgress in Lipid Research, 2016, 63(): 165-181. doi:
-
[7]
NIE Z Y, WANG Y H, WU C T, LI Y, KANG G J, QIN H D, ZENG R Z. Acyl-coA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree)[J]. BMC GenomicsBMC Genomics, 2018, 19(1): 5-. doi:
-
[8]
LEUNG K C, LI H Y, MISHRA G, CHYE M L. ACBP4 and ACBP5, novel Arabidopsis acyl-coA-binding proteins with kelch motifs that bind oleoyl-coA[J]. Plant Molecular BiologyPlant Molecular Biology, 2004, 55(2): 297-309. doi:
-
[9]
SASAKI Y, NAGANO Y. Plant acetyl-CoA carboxylase:tructure, biosynthesis, regulation, and gene manipulation for plant breeding[J]. Bioscience Biotechnology and BiochemistryBioscience Biotechnology and Biochemistry, 2004, 68(6): 1175-1184. doi:
-
[10]
ADAMS J, KELSO R, COOLEY L. The kelch repeat superfamily of proteins: Propellers of cell function[J]. Trends in Cell BiologyTrends in Cell Biology, 2000, 10(1): 17-24. doi:
-
[11]
GARNIER J, GIBRAT J F, ROBSON B. GOR method for predicting protein secondary structure from amino acid sequence[J]. Methods in EnzymologyMethods in Enzymology, 1996, 266(): 540-553. doi:
-
[12]
BURTON M, ROSE T M, FAERGEMAN N J, KNUDSEN J. Evolution of the acyl-CoA binding protein (ACBP)[J]. The Biochemical JournalThe Biochemical Journal, 2005, 392(Pt 2): 299-307.
-
[13]
KELLEY L A, MEZULIS S, YATES C M, WASS M N, STERNBERG M J. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nature ProtocolsNature Protocols, 2015, 10(6): 845-858. doi:
-
[14]
COMBET C, BLANCHET C, GEOURJON C, DELEAGE G. NPS@:network protein sequence analysis[J]. Trends in Biochemical SciencesTrends in Biochemical Sciences, 2000, 25(3): 147-150. doi:
-
[15]
LETUNIC I, DOERKS T, BORK P. SMART: Recent updates, new developments and status in 2015[J]. Nucleic Acids ResearchNucleic Acids Research, 2015, 43(Database issue): 257-260.
-
[16]
CHYE M L, LI H Y, YUNG M H. Single amino acid substitutions at the acyl-coA-binding domain interrupt 14[C]palmitoyl-coA binding of ACBP2, an Arabidopsis acyl-coA-binding protein with ankyrin repeats[J]. Plant Molecular BiologyPlant Molecular Biology, 2000, 44(6): 711-721. doi:
-
[17]
LEUNG K C, LI H Y, XIAO S, TSE M H, CHYE M L. Arabidopsis ACBP3 is an extracellularly targeted acyl-coA-binding protein[J]. PlantaPlanta, 2006, 223(5): 871-881. doi:
-
[18]
GAO W, XIAO S, LI H Y, TSAO S W, CHYE M L. Arabidopsis thaliana acyl-coA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6[J]. New PhytologistNew Phytologist, 2009, 181(1): 89-102. doi:
-
[19]
XIAO S, GAO W, CHEN Q F, CHAN S W, ZHENG S X, MA J Y, WANG M F, WELTI R, CHYE M L. Overexpression of Arabidopsis acyl-coA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence[J]. Plant CellPlant Cell, 2010, 22(5): 1463-1482. doi:
-
[20]
WANG X. Lipid signaling[J]. Current Opinion in Plant BiologyCurrent Opinion in Plant Biology, 2004, 7(3): 329-336. doi:
-
[21]
ZHOU Y, ATKINS J B, ROMPANI S B, BANCESCU D L, PETERSEN P H, TANG H, ZOU K, STEWART S B, ZHONG W. The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis[J]. CellCell, 2007, 129(1): 163-178. doi:
-
[22]
WALZ C, GIAVALISCO P, SCHAD M, JUENGER M, KLOSE J, KEHR J. Proteomics of curcurbit phloem exudate reveals a network of defence proteins[J]. PhytochemistryPhytochemistry, 2004, 65(12): 1795-1804. doi:
-
[23]
YOSHIMOTO K, JIKUMARU Y, KAMIYA Y, KUSANO M, CONSONNI C, PANSTRUGA R, OHSUMI Y, SHIRASU K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis[J]. Plant CellPlant Cell, 2009, 21(9): 2914-2927. doi:
-
[24]
CHEN Q F, XIAO S, QI W, MISHRA G, MA J, WANG M, CHYE M L. The Arabidopsis acbp1acbp2 double mutant lacking acyl-coA-binding proteins ACBP1 and ACBP2 is embryolethal[J]. New PhytolNew Phytol, 2010, 186(4): 843-855. doi:
-
[25]
XIAO S, GAO W, CHEN Q F, RAMALINGAM S, CHYE M L. Overexpression of membrane-associated acyl-coA-binding protein ACBP1 enhances lead tolerance in Arabidopsis[J]. Plant JournalPlant Journal, 2008, 54(1): 141-151. doi:
-
[26]
MANJITHAYA R, ANJARD C, LOOMIS W F, SUBRAMANI S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation[J]. Journal of Cell BiologyJournal of Cell Biology, 2010, 188(4): 537-546. doi:
-
[27]
GAO W, LI H Y, XIAO S, CHYE M L. Acyl-coA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis[J]. Plant JournalPlant Journal, 2010, 62(6): 989-1003.
-
[28]
XIAO S, CHEN Q F, CHYE M L. Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-coA-binding proteins that bind phosphatidylcholine and oleoyl-coA ester[J]. Plant Physiology and BiochemistryPlant Physiology and Biochemistry, 2009, 47(10): 926-933. doi:
-
[29]
CHEN Q F, XIAO S, CHYE M L. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance[J]. Plant PhysiollogistPlant Physiollogist, 2008, 148(1): 304-315. doi:
-
[30]
DU ZY, XIAO S, CHEN Q F, CHYE M L. Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis[J]. Plant PhysiologistPlant Physiologist, 2010, 152(3): 1585-1597. doi:
-
[31]
LI H Y, CHYE M L. Membrane localization of Arabidopsis acyl-coA binding protein ACBP2[J]. Plant Molecular BiologyPlant Molecular Biology, 2003, 51(4): 483-492. doi:
-
[32]
LI H Y, CHYE M L. Arabidopsis acyl-coA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats[J]. Plant Molecular BiologyPlant Molecular Biology, 2004, 54(2): 233-243. doi:
-
[33]
MENG W, HSIAO A S, GAO C, JIANG L, CHYE M L. Subcellular localization of rice acyl-coA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes[J]. New PhytologistNew Phytologist, 2014, 203(2): 469-482. doi:
-
[34]
乔坤.极端耐NaHCO3微藻的鉴定及ACBP抗逆机制研究.哈尔滨: 东北林业大学博士学位论文, 2015.
QIAO K.Identification of novel highly tolerant NaHCO3 microalgae and the role for acyl-coA-binding protein (ACBP) under stress tolerance.Harbin: Northeast Forestry University, 2015. -
[35]
XIAO S, CHYE M L. An Arabidopsis family of six acyl-coA-binding proteins has three cytosolic members[J]. Plant Physiology and BiochemistryPlant Physiology and Biochemistry, 2009, 47(6): 479-484. doi:
-
[36]
AZNAR-MORENO JA, VENEGAS-CALERON M, DU Z Y, TANNER J A, CHYE M L, MARTINEZ-FORCE E, SALAS J J. Characterization of a small acyl-coA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities[J]. Plant Physiology and BiochemistryPlant Physiology and Biochemistry, 2016, 102(): 141-150. doi:
-
[37]
DU Z Y, CHEN M X, CHEN Q F, XIAO S, CHYE M L. Arabidopsis acyl-coA-binding protein ACBP1 participates in the regulation of seed germination and seedling development[J]. Plant JournalPlant Journal, 2013, 74(2): 294-309. doi:
-
[38]
XUE Y, XIAO S, KIM J, LUNG S C, CHEN L, TANNER J A, SUH M C, CHYE M L. Arabidopsis membrane-associated acyl-coA-binding protein ACBP1 is involved in stem cuticle formation[J]. Journal of Experimental BotanyJournal of Experimental Botany, 2014, 65(18): 5473-5483. doi:
-
[39]
ZIMMERMANN P, HIRSCH-HOFFMANN M, HENNIG L, GRUISSEM W. GENEVE- STIGATOR. Arabidopsis microarray database and analysis toolbox[J]. Plant PhysiologyPlant Physiology, 2004, 136(1): 2621-2632. doi:
-
[40]
DU Z Y, CHEN M X, CHEN Q F, XIAO S, CHYE M L. Overexpression of Arabidopsis acyl-coA-binding protein ACBP2 enhances drought tolerance[J]. Plant Cell and EnvironmentPlant Cell and Environment, 2013, 36(2): 300-314. doi:
-
[41]
ZHENG S X, XIAO S, CHYE M L. The gene encoding Arabidopsis acyl-coA-binding protein 3 is pathogen inducible and subject to circadian regulation[J]. Journal Experimental BotanyJournal Experimental Botany, 2012, 63(8): 2985-3000. doi:
-
[42]
LI H Y, XIAO S, CHYE M L. Ethylene- and pathogen-inducible Arabidopsis acyl-coA-binding protein 4 interacts with an ethylene-responsive element binding protein[J]. Journal of Experimental BotanyJournal of Experimental Botany, 2008, 59(14): 3997-4006. doi:
-
[43]
HSIAO A S, YEUNG E C, YE Z W, CHYE M L. The Arabidopsis cytosolic acyl-coA-binding proteins play combinatory roles in pollen development[J]. Plant and Cell PhysiologyPlant and Cell Physiology, 2015, 56(2): 322-333. doi:
-
[44]
XIAO S, LI H Y, ZHANG J P, CHAN S W, CHYE M L. Arabidopsis acyl-coA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition[J]. Plant Molecular BiologyPlant Molecular Biology, 2008, 68(6): 571-583. doi:
-
[45]
XIA Y, YU K, GAO Q M, WILSON E V, NAVARRE D, KACHROO P, KACHROO A. Acyl coA binding proteins are required for cuticle formation and plant responses to microbes[J]. Frontiers in Plant ScienceFrontiers in Plant Science, 2012, 3(): 224-.
-
[46]
JAIN M, NIJHAWAN A, ARORA R, AGARWAL P, RAY S, SHARMA P, KAPOOR S, TYAGI A K, KHURANA J P. F-box proteins in rice.Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant PhysiologyPlant Physiology, 2007, 143(4): 1467-1483. doi:
-
[47]
秦朋飞.棉花酰基辅酶A结合蛋白家族基因的发掘及在非生物胁迫抗性中的功能鉴定.南京:南京农业大学硕士学位论文, 2016.
QIN P F.Genome-wide identification of acyl-coA-binding protein (ACBP) gene family and their functional analysis in abiotic stress resistance in cotton.Nanjing: Nanjing Agricultural University, 2016. -
[48]
PASTOR S, SETHUMADHAVAN K, ULLAH A H, GIDDA S, CAO H, MASON C, CHAPITAL D, SCHEFFLER B, MULLEN R, DYER J, SHOCKEY J. Molecular properties of the class Ⅲ subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii)[J]. Plant SciencePlant Science, 2013, 203/204(): 79-88. doi:
-
[49]
文锦芬, 龚明, 陈凯, 段小凡, 齐亚峰, 王欣欣, 辛艳, 邓明华. 小桐子JcACBP基因克隆和序列分析[J]. 西北植物学报西北植物学报, 2014, 34(11): 2159-2164. doi:
WEN J F, GONG M, CHEN K, DUAN X F, QI Y F, WANG X X, XIN Y, DENG M H. Cloning and expression analysis of a new acyl-coA-binding protein (JcACBP) identified from Jatropha curcas L[J]. Acta Botanica Boreali-Occidentalia SinicaActa Botanica Boreali-Occidentalia Sinica, 2014, 34(11): 2159-2164. doi: -
[50]
NAPIER J A, HASLAM R P. As simple as ACB-new insights into the role of acyl-coA-binding proteins in Arabidopsis[J]. New PhytologistNew Phytologist, 2010, 186(4): 781-783. doi:
-
[51]
WELTI R, LI W, LI M, SANG Y, BIESIADA H, ZHOU H E, RAJASHEKAR C B, WILLIAMS T D, WANG X. Profiling membrane lipids in plant stress responses.Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis[J]. The Journal of Biological ChemistryThe Journal of Biological Chemistry, 2002, 277(35): 31994-32002. doi:
-
[52]
DEVAIAH S P, ROTH M R, BAUGHMAN E, LI M, TAMURA P, JEANNOTTE R, WELTI R, WANG X. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant[J]. PhytochemistryPhytochemistry, 2006, 67(17): 1907-1924. doi:
-
[53]
RADOJKOVIC D, KUSIC J J. Silver staining of denaturing gradient gel electrophoresis gels[J]. Clinical ChemistryClinical Chemistry, 2000, 46(1): 883-884.
-
[54]
DU Z Y, CHEN M X, CHEN Q F, GU J D, CHYE M L. Expression of Arabidopsis acyl-coA-binding proteins AtACBP1 and AtACBP4 confers Pb(Ⅱ) accumulation in Brassica juncea roots[J]. Plant Cell and EnvironmentPlant Cell and Environment, 2015, 38(1): 101-117. doi:
-
[55]
SHOYAB M, GENTRY L E, MARQUARDT H, TODARO G J. Isolation and characterization of a putative endogenous benzodiazepineoid (endozepine) from bovine and human brain[J]. The Journal of Biological ChemistryThe Journal of Biological ChemistryBG视讯, 1986, 261(26): 11968-11973.
-
[56]
SAEZ A, APOSTOLOVA N, GONZALEZ-GUZMAN M, GONZALEZ-GARCIA MP, NICOLAS C, LORENZO O, RODRIGUEZ P L. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 revealits roleasa negative regulator of abscisic acid signalling[J]. Plant JournalPlant Journal, 2004, 37(3): 354-369. doi:
-
[57]
KWAK J M, MORI I C, PEI Z M, LEONHARDT N, TORRES M A, DANGL J L, BLOOM R E, BODDE S, JONES J D, SCHROEDER J I. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. EMBO JournalEMBO Journal, 2003, 22(11): 2623-1633. doi:
-
[58]
MICHAELY P, BENNETT V. The ANK repeat:a ubiquitous motif involved in macromolecular recognition[J]. Trends in Cell BiologyTrends in Cell Biology, 1992, 2(5): 127-129. doi:
-
[59]
LICAUSI F, KOSMACZ M, WEITS D A, GIUNTOLI B, GIORGI F M, VOESENEK L A, PERATA P, VAN DONGEN J T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization[J]. NatureNature, 2011, 479(): 419-422. doi:
-
[60]
GIBBS D J, LEE S C, ISA N M, GRAMUGLIA S, FUKAO T, BASSEL G W, CORREIA C S, CORBINEAU F, THEODOULOU F L, BAILEY-SERRES J, HOLDSWORTH M J. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants[J]. NatureNature, 2011, 479(): 415-418. doi:
-
[61]
KOSMACZ M, PARLANTI S, SCHWARZLÄNDER M, KRAGLER F, LICAUSI F, VAN DONGEN J T. The stability and nuclear localization of the transcription factor RAP2.12 are dynamically regulated by oxygen concentration[J]. Plant Cell EnvironmentPlant Cell Environment, 2015, 38(6): 1094-1103. doi:
-
[62]
XIE L J, YU L J, CHEN Q F, WANG F Z, HUANG L, XIA F N, ZHU T R, WU J X, YIN J, LIAO B, YAO N, SHU W, XIAO S. Arabidopsis acyl-coA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism[J]. Plant JournalPlant Journal, 2015, 81(1): 53-67. doi:
-
[63]
LIAO P, CHEN Q F, CHYE M L. Transgenic Arabidopsis flowers overexpressing acyl-coA-binding protein ACBP6 are freezing tolerant[J]. Plant and Cell PhysiologyPlant and Cell Physiology, 2014, 55(6): 1055-1071. doi:
-
[64]
XIAO S, CHYE M L. Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000[J]. Plant PhysiologistPlant Physiologist, 2011, 156(4): 2069-2081. doi:
-
[65]
LENZ H D, HALLER E, MELZER E, KOBER K, WURSTER K, STAHL M, BASSHAM D C, VIERSTRA R D, PARKER J E, BAUTOR J, MOLINA A, ESCUDERO V, SHINDO T, VAN DER HOORN R A, GUST A A, NUERNBERGER T. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens[J]. Plant JournalPlant Journal, 2011, 66(5): 818-830. doi:
-
[66]
LIU Y, SCHIFF M, CZYMMEK K, TALLOCZY Z, LEVINE B, DINESH-KUMAR S R. Autophagy regulates programmed cell death during the plant innate immune response[J]. CellCell, 2005, 121(4): 567-577. doi:
-
[67]
LAI Z, WANG F, ZHENG Z, FAN B, CHEN Z. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens[J]. Plant JournalPlant Journal, 2011, 66(6): 953-968. doi:
-
[1]
-
BG视讯
图 1 拟南芥和水稻ACBPs的结构示意图
Figure 1. Schematic domain structures of the Arabidopsis thaliana and Oryza sativa ACBPs
图 2 拟南芥和水稻酰基辅酶A结合蛋白在植物发育各个阶段的表达
Figure 2. BG视讯 The expression of Arabidopsis acyl-CoA-binding proteins at various stages of plant development
表 1 BG视讯 不同植物中酰基辅酶A结合蛋白(ACBP)家族的组成
Table 1. The acyl-CoA-binding protein (ACBP) family in various plants
下载: 导出CSV
表 2 12种植物ACBPs蛋白质模型分类
Table 2. Classification of twelve plants ACBPs protein models
模型名称
Model name3D 模型
3D structure结构组成
Structure and composition植物名称
Plant nameClass Ⅰ S1 4个α-螺旋;ACB: 3个α螺旋 Four alpha-helices; ACB:three alpha-helices 拟南芥 A. thaliana、欧洲油菜 B. napus、
甘蓝 B. oleracea、陆地棉 G. hirsutumS2 4个紧凑α-螺旋;ACB: 4个α-螺旋 Four closer alpha-helices; ACB:four alpha-helices 白菜 B. rapa、向日葵 H. annuus、小桐子
J. curas、欧洲醡浆草 O. europeae、油桐
V. fordii、玉米 Z. maysS3 5个紧凑α-螺旋;ACB: 5个α-螺旋 Five closer alpha-helices; ACB:five alpha-helices 水稻 O. sativa Class Ⅱ A1 4个α-螺旋及少量β-折叠;ACB: 3个α-螺旋;ANK: 1个α-螺旋
Four alpha-helices and a few beta-sheets; ACB:three alpha-helices; ANK:one alpha-helix水稻 O. sativa A2 5个α-螺旋及少量β-折叠;ACB: 4个α-螺旋;ANK: 1个α-螺旋
Five alpha-helices and a few beta-sheets; ACB:four alpha-helices; ANK:one alpha-helix玉米 Z. mays A3 5个α-螺旋及少量β-折叠;ACB: 3个α-螺旋;ANK: 1个α-螺旋;Unknown domain: 1个α-螺旋
Five alpha-helices and a few beta-sheets; ACB:three alpha-helices; ANK:one alpha-helix;
Unknown domain: one alpha-helix拟南芥 A. thaliana A4 6个α-螺旋及少量β-折叠;ACB: 5个α-螺旋;ANK: 1个α-螺旋
Six alpha-helices and a few beta-sheets; ACB:five alpha-helices; ANK:one alpha-helix白菜 B. rapa、欧洲醡浆草 O. europeae A5 17个α-螺旋及少量β-折叠;ACB: 9个α-螺旋;ANK: 8个α-螺旋
Seventeen alpha-helices and a few beta-sheets; ACB:nine alpha-helices; ANK:eight alpha-helices欧洲油菜 B. napus A6 19个α-螺旋及少量β-折叠;ACB: 4个α-螺旋;ANK: 6个α-螺旋;Unknown domain1:
1个α-螺旋;Unknown domain2: 8个α-螺旋
Nineteen alpha-helices and a few beta-sheets; ACB:four alpha-helices; ANK: six alpha-helices;
Unknown domain1: one alpha-helix; Unknown domain1: eight alpha-helices大豆 G. max A7 17个α-螺旋及少量β-折叠;ACB: 3个α-螺旋;ANK: 7个α-螺旋;Unknown domain1: 2个α-螺旋;Unknown domain2: 5个α-螺旋Seventeen alpha-helices and a few beta-sheets; ACB:three alpha-helices; ANK:seven alpha-helices; Unknown domain1: two alpha-helices; Unknown domain2: five alpha-helices 小桐子 J. curcas A8 18个α-螺旋及少量β-折叠;ACB: 3个α-螺旋;ANK: 7个α-螺旋;Unknown domain: 8个α-螺旋
Eighteen alpha-helices and a few beta-sheets; ACB:three alpha-helices; ANK:seven alpha-helices;
Unknown domain: eight alpha-helices陆地棉 G. hirsutum A9 16个α-螺旋及少量β-折叠;ACB: 4个α-螺旋;ANK: 7个α-螺旋;Unknown domain: 5个α-螺旋
Sixteen alpha-helices and a few beta-sheets; ACB:four alpha-helices; ANK:seven alpha-helices;
Unknown domain: five alpha-helixes甘蓝 B. oleracea、向日葵 H. annuus Class Ⅲ L1 4个α-螺旋;ACB: 4个α-螺旋Four alpha-helices; ACB:four alpha-helies 拟南芥 A. thaliana、白菜 B. rapa、欧洲油菜 B. napus、甘蓝 B. oleracea、向日葵
H. annuus、油桐 V. fordii、玉米 Z. maysL2 4个α-螺旋和部分氨基酸链;ACB: 4个α-螺旋
Four alpha-helices and part of amino acid chain; ACB:four alpha-helices水稻 O. sativa、陆地棉 G. hirsutum、欧洲醡浆草 O. europeae、小桐子 J. curcas、大豆 G. max Class Ⅳ K1 α-螺旋与β-折叠构成3个结构域;ACB: 1个结构域;Kelch: 2个结构域
Alpha-helix and beta-sheet constitute three domains; ACB:one alpha-helix; Kelch:two alpha-helices;玉米 Z. mays K2 α-螺旋与β-折叠构成5个结构域;ACB: 1个结构域;Kelch:
3个结构域;Unknown domain: 1个结构域
Alpha-helix and beta-sheet constitute five domains; ACB:one alpha-helix;
Kelch:three alpha-helices; Unknown domain: one alpha-helix大豆 G. max K3 α-螺旋与β-折叠构成4个结构域;ACB: 1个结构域;Kelch: 3个结构域
Alpha-helix and beta-sheet constitute four domains; ACB:one alpha-helix; Kelch:three alpha-helixes拟南芥 A. thaliana、欧洲油菜 B. napus、
甘蓝 B. oleracea、陆地棉 G. hirsutum、
欧洲醡浆草 O. europeae、向日葵
H. annuus、小桐子 J. curcas、水稻
O. sativa、油桐 V. fordiiK4 α-螺旋与β-折叠构成5个结构域;ACB: 1个结构域(无β-折叠);
Kelch: 3个结构域;Unknown domain: 1个结构域
Alpha-helix and beta-sheet constitute five domains; ACB:one alpha-helix(no beta-sheet);
Kelch:three alpha-helices; Unknown domain: one alpha-helix白菜 B. rapa 应用Phyre2软件预测3D模型。粉红色为ACB结构域,A1–A9中蓝色为ANK结构域,灰色表示未知结构域。K1–K4中蓝色、棕色和绿色为kelch结构域,灰色表示未知结构域。
The 3D model was predicted by using the Phyre2 software. Pink indicateds the ACB domain, blue in A1–A9 indicates the ANK domain, and gray indicates the unknown domain. In K11–K4, blue, brown, and green are kelch domains, and gray indicates an unknown domain.下载: 导出CSV
表 3 拟南芥和水稻ACBPs与磷脂和酰基辅酶A酯的结合特征
Table 3. Binding characteristics of AtACBPs and OsACBPs with phospholipids and acyl-CoA ester
蛋白质 Protein 磷脂结合 Phospholipid binding 酰基辅酶A酯的结合 Acyl-CoA ester binding 参考文献 Reference Class Ⅰ AtACBP6 PC(16:0/18:0/18:1/18:2) palmitoyl-CoA(16:0-CoA)
oleoyl-CoA(18:1-CoA)[23,25,26,29] OsACBP1 PA(18:0/18:1)
PC(18:0/18:1/18:2)palmitoyl-CoA(16:0-CoA)
oleoyl-CoA(18:0-CoA)
oleoyl-CoA(18:1-CoA)
linolenoyl-CoA(18:2-CoA)[4] OsACBP2 PA(18:0/18:1)
PC(18:0/18:1/18:2)linoleoyl-CoA(18:2-CoA) [4] OsACBP3 PA(18:0/18:1)
PC(18:0/18:1/18:2)linoleoyl-CoA(18:2-CoA) [4] Class Ⅱ AtACBP1 PA(16:0/18:0/18:1)
PC(18:1/18:2)palmitoyl-CoA(16:0-CoA)
oleoyl-CoA(18:1-CoA)
linoleoyl-CoA(18:2-CoA)
linolenoyl-CoA(18:3-CoA)
arachidonyl-CoA(20:4-CoA)[16-19,24-25,27] AtACBP2 PC(18:1/18:2)
lysolPCpalmitoyl-CoA(16:0-CoA)
oleoyl-CoA(18:1-CoA)
linoleoyl-CoA(18:2-CoA)
linolenoyl-CoA(18:3-CoA)
arachidonyl-CoA(20:4-CoA)[16-19,24-25,27] OsACBP4 PA(16:0/18:0/18:1)
PC(18:0/18:1/18:2)palmitoyl-CoA(16:0-CoA)
oleoyl-CoA(18:1-CoA)
linoleoyl-CoA(18:2-CoA)[4] Class Ⅲ AtACBP3 PE PC(18:0/18:1/18:2) linoleoyl-CoA(18:2-CoA)
linolenoyl-CoA(18:3-CoA)
arachidonyl-CoA(20:4-CoA)[19,20,24,30] OsACBP5 PA(18:0/18:1)
PC(18:0/18:1/18:2)palmitoyl-CoA(16:0-CoA)
linoleoyl-CoA(18:2-CoA)[4] Class Ⅳ AtACBP4 PC(18:1/18:2) palmitoyl-CoA(16:0-CoA)
oleoyl-CoA(18:1-CoA)
arachidonyl-CoA(20:4-CoA)[21-24,26,28] AtACBP5 PC(18:1/18:2) palmitoyl-CoA(16:0-CoA)
oleoyl-CoA(18:1-CoA)
arachidonyl-CoA(20:4-CoA)[21-24,26,28] OsACBP6 PA(18:0/18:1)
PC(18:0/18:1/18:2)oleoyl-CoA(18:1-CoA)
linoleoyl-CoA(18:2-CoA)[4] 红色字代表强结合性,绿色字代表弱结合性。
Red text indicates strong binding.Green text indicates word weak binding.下载: 导出CSV
-