BG视讯

欢迎访问 草业科学,今天是

liangzhongxiufufangshiduiqingzanggaoyuanquqituchangxiufuhoucaodigaidudeyingxiang

赵科 汪正芸 李育庆 郑天立 胡健波

引用本文: 赵科,汪正芸,李育庆,郑天立,胡健波. 两种修复方式对青藏高原取弃土场修复后草地盖度的影响. 草业科学, 2019, 36(10): 2499-2506. doi: shu
Citation:  ZHAO K, WANG Z Y, LI Y Q, ZHENG T L, HU J B. Effect of two restorations on the grassland coverage after remediation of take-abandon soil field on the Qinghai-Tibet Plateau. Pratacultural Science, 2019, 36(10): 2499-2506. doi: shu

两种修复方式对青藏高原取弃土场修复后草地盖度的影响

    作者简介: 赵科(1966-),男,青海西宁人,高级工程师,本科。E-mail: ;
    通讯作者: 郑天立,
  • 基金项目:BG视讯 国家自然科学基金(31901172);青海省交通运输厅科技项目(31118022)

摘要: 以公路工程建设为代表的人类活动和气候变化深刻影响高寒草地生态系统的功能。为探索不同修复方式对丧失主要功能的高寒草地生态系统的修复效果,选择青海省共玉高速旁因修路产生并经修复的取弃土场为研究对象,使用VegCover软件测定草地盖度,探讨了两种不同修复方式(种草法和草皮移植法)修复后青藏高原上低海拔(3 012和3 335 m)、中海拔(4 229和4 302 m)和高海拔(4 433和4 577 m)样地的草地盖度差异及其与环境因子的关系。结果表明,使用草皮移植修复后的草地盖度(42.3%)显著高于使用种草法修复的草地盖度(16.8%)(P < 0.05);使用种草法修复的草地盖度随海拔增加显著降低(P < 0.05),而使用草皮移植修复的草地盖度在不同海拔样地间差异不显著(P > 0.05)。两种修复方式下草地盖度的自然对数响应比随海拔的增加而增加(r = 0.37, P < 0.05)。研究结果说明,采用草皮移植法对于高寒草地群落盖度的修复效果优于种草法,种草法不适用于青藏高原高海拔区域取弃土场草地修复。

English

    1. [1]

      KATO T, TANG Y, GU S, CUI X, HIROTA M, DU M, LI Y, ZHAO X, OILAWA T.  Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China[J]. Agricultural and Forest Meteorology, 2004, 124(1-2): 121-134. doi:

    2. [2]

      LU X, KELSEY KC, YAN Y, SUN J, WANG X, CHENG G, NEFF C J.  Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: A synthesis[J]. EcosphereBG视讯, 2017, 8(1): e01656-.

    3. [3]

      TANG L, DUAN X, KONG F, ZHANG F, ZHENG Y, LI Z, MEI Y, ZHAO Y, HU S.  Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s[J]. Scientific Reports, 2018, 8(): 41598-41618.

    4. [4]

      孙鸿烈, 郑度. 青藏高原形成演化与发展. 广州: 广东科技出版社, 1998: 1-72.
      SUN H L, ZHENG D. Formation, Evolution and Development of Tibetan Plateau. Guangzhou: Guangdong Science Technology Press, 1998: 1-72.

    5. [5]

      陈辉, 李双成, 郑度.  基于人工神经网络的青藏公路铁路沿线生态系统风险研究[J]. 北京大学学报(自然科学版), 2005, 41(4): 586-593. doi:
      CHEN H, LI S C, ZHENG D.  Ecological risk assessment of regions alongside Qinghai-Xizang Highway and Railway based on artificial neural network[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2005, 41(4): 586-593. doi:

    6. [6]

      刘彤, 毛亮, 庞晓攀, 金少红, 张静, 郭正刚.  青藏高原高寒草原区工程迹地面积对其恢复过程中土壤水分和养分含量变化的影响[J]. 草业科学, 2017, 34(11): 2175-2182. doi:
      LIU T, MAO L, PANG X P, JIN S H, ZHANG J, GUO Z G.  Effect of areas of land used for engineering construction on soil moisture and nutrient in the alpine steppe regions of the Qinghai-Tibet Plateau[J]. Pratacultural Science, 2017, 34(11): 2175-2182. doi:

    7. [7]

      QIU J.  Riding on the roof of world[J]. Nature, 2007, 449(): 398-402. doi:

    8. [8]

      LI X, PERRY G L W, BRIERLEY G J.  A spatial simulation model to assess controls upon grassland degradation on the Qinghai-Tibet Plateau, China[J]. Applied Geography, 2018, 98(): 166-176. doi:

    9. [9]

      陈学平, 杨艳刚, 尚占环, 陈济丁, 孔亚平, 王九峦.  青藏高原公路两侧草地土壤种子库特征研究: 以国道214公路共玉高速段为例[J]. 草地学报, 2018, 26(1): 85-91.
      CHEN X P, YANG Y G, SHANG Z H, CHEN J D, KONG Y P, WANG J Y.  A study on the characteristics of soil seed bank of grassland on roadsides of Qinghai-Tibet Plateau: Take the highway of G214 for example[J]. Acta Agrestia Sinica, 2018, 26(1): 85-91.

    10. [10]

      CHEN B, ZHANG X, TAO J, WU J, WANG J, SHI P, ZHANG Y, YU C.  The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural & Forest MeteorologyBG视讯, 2014, 189-190(): 11-18.

    11. [11]

      CHENG G, WU T.  Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau[J]. Journal of Geophysical Research Earth Surface, 2007, 112(F2): F02S03-.

    12. [12]

      肖雪君, 周青平, 陈有军, 杜忠, 柏晓玲, 田莉华, 彭先琴.  播种量对高寒牧区林纳燕麦生产性能及光合特性的影响[J]. 草业科学, 2017, 34(4): 761-771. doi:
      XIAO X J, ZHOU Q P, CHEN Y J, DU Z, BO X L, TIAN L H, PENG X Q.  Effect of seeding rate on production performance and photosynthetic characteristics of Avena sativa cv. LENA in alpine pastoral regions[J]. Pratacultural Science, 2017, 34(4): 761-771. doi:

    13. [13]

      李志, 袁颖丹, 张学玲, 郭晓敏, 张文元, 胡冬南, 潜伟平, 彭辉武, 牛德奎.  武功山退化草甸不同植被修复措施生长效果及适应性研究[J]. 中南林业科技大学学报, 2018, 38(2): 90-96.
      LI Z, YUAN Y D, ZHANG X L, GUO X M, ZHANG W Y, HU D N, QIAN W P, PENG H W, NIU D K.  Growth effects and adaptabilities of different vegetation restoration measures of degraded meadow in Wugong mountain[J]. Journal of Central South University of Forestry & Technology, 2018, 38(2): 90-96.

    14. [14]

      DONG S K, WANG X X, LIU S L, LI Y Y, ZHU L.  Reproductive responses of alpine plants to grassland degradation and artificial restoration in the Qinghai-Tibetan Plateau[J]. Grass and Forage Science, 2015, 70(2): 229-238. doi:

    15. [15]

      郑度, 李炳元.  青藏高原自然环境的演化与分异[J]. 地理研究, 1990, 9(): 1-10.
      ZHENG D, LI B Y.  Evolution and differentiation of the physico-geographical environment of Qinghai-Xizang Plateau[J]. Geographical Research, 1990, 9(): 1-10.

    16. [16]

      BG视讯 hu j b, liu c b. vegcover: a green coverage measure software for vegetation restoration monitoring. //legislation, technology and practice of mine land reclamation. proceedings of the beijing international symposium on land reclamation and ecological restoration (lrer 2014), 16-19 october 2014. beijing, china: crc press, 2014: 209-212.

    17. [17]

      胡健波, 张璐, 黄伟, 吴世红, 刘长兵.  基于数码照片的草地植被覆盖度快速提取方法[J]. 草业科学, 2011, 28(9): 1661-1665.
      HU J B, ZHANG L, HUANG W, WU S H, LIU C B.  Quickly determining grassland cover using the digital image[J]. Pratacultural Science, 2011, 28(9): 1661-1665.

    18. [18]

      FANG J, SHEN Z, TANG Z, WANG X, WANG Z, FENG J.  Forest community survey and the structural characteristics of forests in China[J]. Ecography, 2012, 35(12): 1059-1071. doi:

    19. [19]

      孙寿, 文辉, 田波波, 董新平.  高寒地区高速公路边坡生态防护工程试验研究[J]. 路基工程, 2018, 1(1): 144-147.
      SUN S, WEN H, TIAN B B, DONG X P.  Experimental research on bioengineering protection for highway slope in alpine regions[J]. Subgrade EngineeringBG视讯, 2018, 1(1): 144-147.

    20. [20]

      CUI X, GRAF H F.  Recent land cover changes on the Tibetan Plateau: A review[J]. Climatic Change, 2009, 94(1-2): 47-61. doi:

    21. [21]

      陈志国, 周国英, 陈桂琛, 董新平.  青藏铁路格唐段高海拔地区植被恢复研究: 高寒草原植被现状与恢复基本途径探讨[J]. 安徽农业科学, 2006, 34(23): 6283-6285. doi:
      CHEN Z G, ZHOU G Y, CHEN G C, DONG X P.  Study on the way of restoration and rebilitation of vegetation in the high: Altitude area of Qinghai-Tibetan railway[J]. Journal of Anhui Agricultural Sciences, 2006, 34(23): 6283-6285. doi:

    22. [22]

      郭坤, 任康, 郑景明, 柯裕州.  沙埋深度对青藏高原4种草种萌发和幼苗生长的影响[J]. 福建农林大学学报(自然科学版), 2018, 47(4): 487-493.
      GUO K, REN K, ZHENG J M, KE Y Z.  Effect of sand burial depth on seed germination and seedling growth of four grasses in Qinghai-Tibet Plateau[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition)BG视讯, 2018, 47(4): 487-493.

    23. [23]

      何盘星, 张鲜花, 朱进忠.  海拔梯度对塔尔巴哈台山地鸭茅群落物种组成及多样性影响[J]. 草业科学, 2018, 35(2): 286-296. doi:
      HE P X, ZHANG X H, ZHU J Z.  Species diversity and characteristics of a Dactylis glomerata community at different elevations in Tarbagatai Shan[J]. Pratacultural Science, 2018, 35(2): 286-296. doi:

    24. [24]

      MENGES E S, WALLER D M.  Plant strategies in relation to elevation and light in floodplain herbs[J]. The American Naturalist, 1983, 122(4): 454-473. doi:

    25. [25]

      TSECHOE D, SHIPING W, SHILONG P, HOPPING K A, TENZIN T, KLEIN J A.  Grazing and spring snow counteract the effects of warming on an alpine plant community in Tibet through effects on the dominant species[J]. Agricultural and Forest Meteorology, 2018, 263(): 188-197. doi:

    26. [26]

      BELL K L, BLISS L C.  Plant reproduction in a high arctic environment[J]. Arctic and Alpine Research, 1980, 12(1): 1-10. doi:

    27. [27]

      ZHENG G G, RUI J L, FU J N, QING B W, YU K H.  Effect of highway construction on plant diversity of grassland communities in the permafrost regions of the Qinghai-Tibet plateau[J]. The Rangeland Journal, 2007, 29(2): 161-167. doi:

    28. [28]

      CAI H, YANG X, XU X.  Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects[J]. Ecological Engineering, 2015, 83(): 112-119. doi:

    29. [29]

      SAWTSCHUK J, GALLET S, BIORET F.  Evaluation of the most common engineering methods for maritime cliff-top vegetation restoration[J]. Ecological Engineering, 2012, 45(): 45-54. doi:

    30. [30]

      尚永成, 张小华.  青藏高原多年冻土地区公路建设对植被类型的影响[J]. 草业科学, 2005, 22(12): 17-19. doi:
      SHANG Y C, ZHANG X H.  Effect of the road construction on the vegetation type in the multiyear frozen-soil Region on the Qinghai-Tibetan Plateau[J]. Pratacultural Science, 2005, 22(12): 17-19. doi:

    31. [31]

      kirmer a, mann s, stolle m, tischew s, kiehl k. near-natural restoration methods for high nature value areas. salvere-regional workshop in poland. department of grassland sciences. poland: poznań university of life sciences, 2009: 21-28.

    32. [32]

      郜慧双, 尹玉婷, 张国庆, 程继鸿, 陈青君.  双孢蘑菇菇渣对坪床土壤及草坪生长的影响[J]. 应用与环境生物学报, 2016, 22(5): 926-931.
      GAO H S, YIN Y T, ZHANG G Q, CHENG J H, CHEN Q J.  Effect of spent mushroom (Agaricus bisporus) compost on rootzone soil quality and turf growth[J]. Chinese Journal of Applied Environment Biology, 2016, 22(5): 926-931.

    1. [1]

      魏彦强芦海燕王金牛孙建王旭峰 . 近35年青藏高原植被带变化对气候变化及人类活动的响应. 草业科学, 2019, 36(4): 1163-1176. doi: 

    2. [2]

      王娟舒朝成张红艳张静张雯娜郭正刚 . 青藏高原腹地不同海拔带青藏公路取土迹地恢复草地植物群落的特征. 草业科学, 2019, 36(3): 601-611. doi:  BG视讯

    3. [3]

      陈佼张丽 . 天山北坡草地盖度高光谱遥感估算. 草业科学, 2017, 11(1): 30-39. doi: 

    4. [4]

      赵志平吴晓莆李果李俊生BG视讯 . 黄河源区高寒草地NDVI格局与梯度变化. 草业科学, 2013, 7(12): 1917-1925.

    5. [5]

      张颖章超斌王钊齐杨悦李建龙 . 三江源1982-2012年草地植被覆盖度动态及其对气候变化的响应. 草业科学, 2017, 11(10): 1977-1990. doi: 

    6. [6]

      冉洪伍范继辉黄菁 . 藏北高寒草地土壤冻融过程水热变化特征. 草业科学, 2019, 36(4): 980-990. doi:  BG视讯

    7. [7]

      黄文洁曾桐瑶黄晓东 . 青藏高原高寒草地植被物候时空变化特征. 草业科学, 2019, 36(4): 1032-1043. doi:  BG视讯

    8. [8]

      韩丛丛杨阳刘秉儒谢应忠 . 草地土壤微生物多样性影响因子. 草业科学, 2014, 8(12): 2242-2250. doi: 

    9. [9]

      任世龙宜树华陈建军秦彧王晓云 . 基于不同数码相机和图像处理方法的高寒草地植被盖度估算的比较 . 草业科学, 2014, 8(6): 1007-1013. doi:  BG视讯

    10. [10]

      李文龙蔡栋苏文亮魏巍朱高峰赵志刚许静 . 基于SPEI指数与GIS技术的高寒草地干旱生态风险动态评价. 草业科学, 2019, 36(6): 1531-1543. doi: 

    11. [11]

      赵锦梅王彦辉王紫杨鹏 . 祁连山东段金强河河谷高寒草地土壤的水文特征. 草业科学, 2020, 37(2): 256-265. doi:  BG视讯

    12. [12]

      郭小伟杜岩功林丽李以康张法伟李茜刘淑丽欧阳经政曹广民 . 青藏高原北缘3种高寒草地的CH4、CO2和N2O通量特征的初步研究. 草业科学, 2016, 10(1): 27-37. doi: 

    13. [13]

      刘玉刘振恒邓蕾武高林 . 季节性放牧对草地植物多样性与功能群特征的影响. 草业科学, 2016, 10(7): 1403-1409. doi: 

    14. [14]

      贺有龙汪海波祁 彪 . “黑土滩”中华羊茅栽培草地生产力动态. 草业科学, 2014, 8(1): 200-204. doi: 

    15. [15]

      赵新来李文龙Xulin Guo余翠赵玉婷许静 . Pa、SPI和SPEI干旱指数对青藏高原东部高寒草地干旱的响应比较. 草业科学, 2017, 11(2): 273-282. doi: 

    16. [16]

      冯云飞李猛李少伟邸迎伟沈振西张宪洲余成群严俊席永士武建双 . 2010 – 2017年藏北高寒退化草地禁牧恢复效果评价. 草业科学, 2019, 36(4): 1148-1162. doi: 

    17. [17]

      田青李宗杰王建宏宋玲玲韩蓉陈博 . 摩天岭北坡东南部不同海拔梯度草本植物群落特征. 草业科学, 2016, 10(4): 755-763. doi:  BG视讯

    18. [18]

      任世龙宜树华陈建军秦 彧 . 高山草地植被盖度对气候变暖和人类活动的响应. 草业科学, 2013, 7(4): 506-514.

    19. [19]

      郭连云BG视讯 . 三江源区气候变化及其对牧草产量的潜在影响. 草业科学, 2013, 7(10): 1613-1618.

    20. [20]

      普宗朝张山清瓦哈提王珂哈布拉哈提沙拉木冯丽晔陈亮葛怡成买买提 . 近56年乌鲁木齐市青草期水热气候条件时空变化. 草业科学, 2018, 12(7): 1602-1613. doi: 

  • BG视讯

    图 1  BG视讯 原始草地图片(a)与VegCover软件识别并计算草地盖度的图片(b)

    Figure 1.  BG视讯 Picture taken of the grass (a) and picture of using VegCover software to identify and calculate grassland coverage (b)

    图 2  VegCover软件识别的两种修复方式在不同海拔草地的实际修复效果

    Figure 2.  Effect of two restorations on VegCover-based grassland coverage of different elevation sites

    图 3  不同海拔梯度草地修复方式对草地盖度的影响

    Figure 3.  Effect of different restorations on grassland coverage of the different elevation sites

    图 4  BG视讯 海拔、温度与降水对自然对数响应比的影响

    Figure 4.  The relationship between the natural logarithm response ratios against elevation (a), mean annual temperature (b) and precipitation (c)

    表 1  不同海拔草地样地信息

    Table 1.  Information of the investigated grassland sites

    样地 Site纬度 Latitude经度 Longitude海拔 Elevation/m草地类型 Grassland type
    低海拔 Low elevation 36°03′ N 100°20′ E 3 012 高寒草原 Alpine steppe
    35°53′ N 99°57′ E 3 335
    中海拔 Medium elevation 34°37′ N 98°01′ E 4 229 高寒草原 Alpine steppe
    34°32′ N 97°59′ E 4 302
    高海拔 High elevation 33°47′ N 97°08′ E 4 433 高寒草甸 Alpine meadow
    33°59′ N 97°26′ E 4 577
    下载: 导出CSV

    表 2  海拔和修复方式对草地盖度影响的双因素方差分析

    Table 2.  BG视讯 Results of the two-way ANOVA for the effects of elevation and restorations and their interactions on the grassland coverage

    变量 VariableFP
    海拔 Elevation4.450.015
    修复方式 Restoration methods36.32 < 0.001
    海拔 × 修复方式
    Elevation × restoration methods
    0.360.701
    下载: 导出CSV

    表 3  海拔对自然对数响应比的单因素方差分析

    Table 3.  BG视讯 Results of the one-way ANOVA for the effects of elevation on the grassland coverage

    样地
    Site
    样地数
    Site number
    平均值
    Mean
    FP
    低海拔
    Low elevation
    120.686 ± 0.3543.650.039
    中海拔
    Medium elevation
    121.660 ± 1.393
    高海拔
    High elevation
    121.752 ± 1.039
    下载: 导出CSV
    BG视讯

                      <dfn id='78e6x'><optgroup id='78e6x'></optgroup></dfn><tfoot id='78e6x'><bdo id='78e6x'><div id='78e6x'></div><i id='78e6x'><dt id='78e6x'></dt></i></bdo></tfoot>

                      <ul id='78e6x'></ul>

                      • 加载中
                      • 图(4)表(3)
                        计量
                        • PDF下载量:  10
                        • 文章访问数:  169
                        • HTML全文浏览量:  145
                        文章相关
                        • 通讯作者:  郑天立,
                        • 收稿日期:  2019-01-23
                        • 刊出日期:  2019-10-01
                        通讯作者: 陈斌,
                        • 1. 

                          BG视讯shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

                        1. 本站搜索
                        2. 百度学术搜索
                        3. 万方数据库搜索
                        4. CNKI搜索

                        /

                        返回文章
                        BG视讯