BG视讯

欢迎访问 草业科学,今天是

BG视讯jiyuguangnengliyonglvmoxingdegannanzhouzhibeijingchujishengchanliyanjiu

许静 陈迪 李文龙 魏巍

引用本文: 许静,陈迪,李文龙,魏巍. 基于光能利用率模型的甘南州植被净初级生产力研究. 草业科学, 2019, 36(10): 2455-2465. doi: shu
Citation:  XU J, CHEN D, LI W L, WEI W. Study of vegetation net primary productivity in Gannan based on light use efficiency model. Pratacultural Science, 2019, 36(10): 2455-2465. doi: shu

基于光能利用率模型的甘南州植被净初级生产力研究

    作者简介: 许静(1983-),女,河北青县人,副教授,博士,主要从事生态学与生态经济学研究。E-mail: ;陈迪(1990-),男,河南内乡县人,硕士,主要从事遥感与地理信息系统方向的研究。E-mail: ;
    通讯作者: 陈迪,
  • 基金项目: 国家社会科学基金(14CJY010)

摘要: 作为反映生态过程的关键指标,植被净初级生产力(NPP)的动态变化对于了解生态系统碳循环及气候变化具有重要的意义。本研究基于遥感(RS)/地理信息系统(GIS)技术,利用改进的光能利用率模型研究了甘南州2011 – 2014年植被NPP,在对比验证的基础上,分析了甘南州植被NPP时空分布格局及其与地形因子之间的关系。结果表明,改进后的光能利用率模型能够较好地模拟研究区的植被NPP,可以用于大区域长时间尺度的模拟。2011 – 2014年甘南州植被平均NPP为478.26 g C·(m2·a)–1。在一年中,植被NPP日均值呈先增加后降低的趋势,且在7月达到最大值;NPP累积值从5月开始快速增加,并在10月后趋于稳定。在空间上,东南部山区NPP平均值较大,北部农区、农牧交错带和西南部高海拔地区相对较小。随海拔升高和坡度增加,NPP均呈先增后减的趋势;所有坡向中,NPP在北坡最大,南坡最小。

English

    1. [1]

      CRAMER W, FIELD C B.  Comparing global models of terrestrial net primary productivity (NPP): Introduction[J]. Global Change Biology, 1999, 5(1): 3-4.

    2. [2]

      EUSKIRCHEN E S, Chen J, LI H, GUSTAFSON E J, CROW T R.  Modeling landscape net ecosystem productivity (Land NEP) under alternative management regimes[J]. Ecological Modelling, 2002, 154(1-2): 75-91. doi:

    3. [3]

      RUIMY A, SAUGIER B, DEDIEU G.  Methodology for the estimation of terrestrial net primary production from remotely sensed data[J]. Journal of Geophysical Research Atmospheres, 1994, 99(D3): 5263-5284. doi:

    4. [4]

      FIELD C B, BEHRENFELD M J, RANDERSON J T, FALKOWSKI P.  Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237-. doi:

    5. [5]

      刘海江, 尹思阳, 孙聪, 彭福利, 周澎.  2000-2010年锡林郭勒草原NPP时空变化及其气候响应[J]. 草业科学, 2015, 32(11): 1709-1720. doi:
      LIU H J, YIN S Y, SUN C, PENG F L, ZHOU P.  Temporal and spatial variation of net primary productivity (npp) and its responses with climatic changes in the Xilingol grassland from 2000 to 2010[J]. Pratacultural Science, 2015, 32(11): 1709-1720. doi:

    6. [6]

      CRAMER W, KICKLIGHTER D W, BONDEAU A, III BM, CHURKINA G, NEMRY B, SCHLOSS A L.  Comparing global models of terrestrial net primary productivity (NPP): Overview and key results[J]. Global Change Biology, 1999, 5(S1): 1-15. doi:

    7. [7]

      朱文泉, 陈云浩, 徐丹, 李京.  陆地植被净初级生产力计算模型研究进展[J]. 生态学杂志, 2005, 24(3): 296-300. doi:
      ZHU W Q, CHEN Y H, XU D, LI J.  Advances on terrestrial vegetation net primary productivity calculation model[J]. Chinese Journal of Ecology, 2005, 24(3): 296-300. doi:

    8. [8]

      周平, 武威, 王瑞, 刘涛, 孙成明.  不同草地NPP估算模型对中国草地的模拟计算分析[J]. 草业科学, 2018, 35(10): 2381-2388. doi:
      ZHOU P, WU W, WANG R, LIU T, SUN C M.  Analysis of grassland simulation using different estimation models of grassland net primary productivity in China[J]. Pratacultural Science, 2018, 35(10): 2381-2388. doi:

    9. [9]

      王玮, 冯琦胜, 郭铌, 沙莎, 胡蝶, 王丽娟, 李耀辉.  基于长时间序列NDVI资料的我国西北干旱区植被覆盖动态监测[J]. 草业科学, 2015, 32(12): 1969-1979. doi:
      WANG W, FENG Q S, GUO N, SHA S, HU D, WANG L J, LI Y H.  Dynamic monitoring of vegetation coverage based on long time-series NDVI data sets in northwest arid region of China[J]. Pratacultural Science, 2015, 32(12): 1969-1979. doi:

    10. [10]

      POTTER C S, RERSON J T, FIELD C B, MATSON P A, VITOUSEK P M, MOONEY H A, KLOOSTER S A.  Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841. doi:

    11. [11]

      PRINCE S D, GOWARD S N.  Global primary production: A remote sensing approach[J]. Journal of Biogeography, 1995, 22(4-5): 815-835.

    12. [12]

      TURNERD P, RITTS W D, STYLES J M, YANG Z, COHEN W B, LAW B E, THORNTON P E.  A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP[J]. Tellus Series B-chemical & Physical Meteorology, 2006, 58(5): 476-490.

    13. [13]

      KING D A, TURNER D P, RITTS W D.  Parameterization of a diagnostic carbon cycle model for continental scale application[J]. Remote Sensing of Environment, 2011, 115(7): 1653-1664. doi:

    14. [14]

      YUAN W, LIU S, ZHOU G, TIESZEN L L, BALDOCCHI D, HOLLINGER D Y.  Deriving a light use efficiency model from eddy covariance flux data for predicting gross primary production across biomes[J]. Agricultural & Forest Meteorology, 2007, 143(s3-4): 189-207.

    15. [15]

      HE M, JU W, ZHOU Y, CHEN J, HE H, WANG S, HAO Y.  Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity[J]. Agricultural & Forest Meteorology, 2013, 173(10): 28-39.

    16. [16]

      袁文平, 蔡文文, 刘丹, 董文杰.  陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014, 29(5): 541-550. doi:
      YUAN W P, CAI W W, LIU D, DONG W J.  Satellite-based vegetation production models of terrestrial ecosystem: An overview[J]. Advances in Earth Science, 2014, 29(5): 541-550. doi:

    17. [17]

      梁天刚, 崔霞, 冯琦胜, 王莺, 夏文韬.  2001 – 2008年甘南牧区草地地上生物量与载畜量遥感动态监测[J]. 草业学报, 2009, 18(6): 12-22. doi:
      LIANG T G, CUI X, FENG Q S, WANG Y, XIA W T.  Remotely sensed dynamics monitoring of grassland aboveground biomass and carrying capacity during 2001 – 2008 in Gannan pastoral area[J]. Acta Prataculturae Sinica, 2009, 18(6): 12-22. doi:

    18. [18]

      李亚刚, 李文龙, 刘尚儒, 秦兰兰.  基于遥感技术的甘南牧区草地植被状况多年动态[J]. 草业科学, 2015, 32(5): 675-685. doi:
      LI Y G, LI W L, LIU S R, QIN L L.  Grassland vegetation dynamics over the years based on remote sensing technology in Gannan pastoral area[J]. Pratacultural Science, 2015, 32(5): 675-685. doi:

    19. [19]

      李文龙, 薛中正, 郭述茂, 范成勇, 张晶.  基于3S技术的玛曲县草地植被覆盖度变化及其驱动力[J]. 兰州大学学报 (自然科学版), 2010, 46(1): 85-90.
      LI W L, XUE Z Z, GUO S M, FAN C Y, ZHANG J.  Vegetation coverage changes and analysis of the driving forces in Maqu County based on 3S technology[J]. Journal of Lanzhou University (Natural Science Edition), 2010, 46(1): 85-90.

    20. [20]

      展小云, 于贵瑞, 郑泽梅, 王秋凤.  中国区域陆地生态系统土壤呼吸碳排放及其空间格局: 基于通量观测的地学统计评估[J]. 地理科学进展, 2012, 31(1): 97-108. doi:
      ZHAN X Y, YU G R, ZHENG Z M, WANG Q F.  Carbon emission and spatial pattern of soil respiration of terrestrial ecosystems in China: Based on geostatistic estimation of flux measurement[J]. Progress in Geography, 2012, 31(1): 97-108. doi:

    21. [21]

      GAO Y H, XU Z, WANG Q, WANG C Z, ZHAN Z M, CHEN L F, YAN J X, QU R.  Vegetation net primary productivity and its response to climate change during 2001 – 2008 in the Tibetan Plateau[J]. Science of the Total Environment, 2013, 444(2): 356-362.

    22. [22]

      SIMS D A, RAHMAN A F, CORDOVA V D, EI-MASRI B Z, BALDOCCHI D D, BOLSTAD P V, MONSON R K.  A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS[J]. Remote Sensing of Environment, 2008, 112(4): 1633-1646. doi:

    23. [23]

      SIMS D A, RAHMAN A F, CORDOVA V D, EI-MASRI B Z, BALDOCCHI D D, FLANAGAN L B, OECHEL W C.  On the use of MODIS EVI to assess gross primary productivity of North American ecosystems[J]. Journal of Geophysical Research BiogeosciencesBG视讯, 2006, 111(G4): 695-702.

    24. [24]

      李贵才. 基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究. 北京: 中国科学院遥感应用研究所博士学位论文, 2004.
      LI G C. Estimation of Chinese terrestrial net primary production using LUE model and MODIS data. PhD Thesis. Beijing: Institute of Remote Sensing Applications Chinese Academy of Sciences, 2004.

    25. [25]

      CAO M, PRINCE S D, SMALL J, GOETZ S J.  Satellite remotely sensed interannual variability in terrestrial net primary productivity from 1980 to 2000[J]. EcosystemsBG视讯, 2004, 7(3): 233-242.

    26. [26]

      XIAO X, HOLLINGER D, ABER J, GOLTZ M, DAVIDSON E A, ZHANG Q, Moore B.  Satellite-based modeling of gross primary production in an evergreen needleleaf forest[J]. Remote Sensing of Environment, 2004, 89(4): 519-534. doi:

    27. [27]

      朱文泉, 潘耀忠, 龙中华, 陈云浩, 李京, 扈海波.  基于GIS和RS的区域陆地植被NPP估算: 以中国内蒙古为例[J]. 遥感学报, 2005, 9(3): 300-307. doi:
      ZHU W Q, PAN Y Z, LONG Z H, CHEN Y H, LI J, HU H B.  Estimating Net primary productivity of terrestrial vegetation based on GIS and RS: A case study in Inner Mongolia, China[J]. Journal of Remote Sensing, 2005, 9(3): 300-307. doi:

    28. [28]

      朴世龙, 方精云, 贺金生, 肖玉.  中国草地植被生物量及其空间分布格局[J]. 植物生态学报, 2004, 28(4): 491-498. doi:
      PIAO S L, FANG J Y, HE J S, XIAO Y.  Spatial distribution of grassland biomass in China[J]. Acta Phytoecologica Sinica, 2004, 28(4): 491-498. doi:

    29. [29]

      王庚辰, 温玉璞. 温室气体浓度与排放检测及相关过程. 北京: 中国环境科学出版社, 1996: 129-139.
      WANG G C, WEN Y P. Greenhouse gas concentration and the related processes of emission inspection. Beijing: Chinese Environment Science Press, 1996: 129-139.

    30. [30]

      王莺, 夏文韬, 梁天刚.  基于CASA模型的甘南地区草地净初级生产力时空动态遥感模拟[J]. 草业学报, 2011, 20(4): 316-324. doi:
      WANG Y, XIA W T, LIANG T G.  Spatial-temporal dynamics simulation of grassland net primary productivity using a satellite data-driven CASA model in Gannan prefecture[J]. Acta Prataculturae Sinica, 2011, 20(4): 316-324. doi:

    31. [31]

      姜立鹏, 覃志豪, 谢雯, 王瑞杰, 徐斌, 卢琦.  中国草地生态系统服务功能价值遥感估算研究[J]. 自然资源学报, 2007, 22(2): 161-170. doi:
      JIANG L P, QIN Z H, XIE W, WANG R J, XU B, LU Q.  Estimation of grassland ecosystem services value of China using remote sensing data[J]. Journal of Natural Resources, 2007, 22(2): 161-170. doi:

    32. [32]

      邹德富. 基于CASA模型的青藏高原NPP时空分布动态研究. 兰州: 兰州大学硕士学位论文, 2012.
      ZOU D F. Spatio-temporal dynamics of Tibet Plateau net primary production using CASA Model. Master Thesis. Lanzhou: Lanzhou University, 2011.

    33. [33]

      陶波, 李克让, 邵雪梅, 曹明奎.  中国陆地净初级生产力时空特征模拟[J]. 地理学报, 2003, 58(3): 372-380. doi:
      TAO B, LI K R, SHAO X M, CAO M K.  Temporal and spatial pattern of net primary production of terrestrial ecosystems in China[J]. Acta Geographica Sinica, 2003, 58(3): 372-380. doi:

    34. [34]

      刘明亮. 中国土地利用/土地覆盖变化与陆地生态系统植被碳库和生产力研究. 北京: 中国科学院遥感应用研究所博士学位论文, 2001.
      LIU M L. Land-use/Land-cover Change and Terrestrial Ecosystem Phytomass Carbon Pool and Production in China. PhD Thesis. Beijing: Institute of Remote Sensing Applications Chinese Academy of Sciences, 2001.

    35. [35]

      朴世龙, 方精云, 陈安平.  我国不同季节陆地植被NPP对气候变化的响应[J]. 植物学报, 2003, 45(3): 269-275. doi:
      PIAO S L, FANG J Y, CHEN A P.  Seasonal dynamics of terrestrial net primary production in response to climate changes in China[J]. Acta Botanica Sinica, 2003, 45(3): 269-275. doi:

    36. [36]

      任璇, 郑江华, 穆晨, 闫凯, 徐廷豹.  不同气象插值方法在新疆草地NPP估算中的可靠性评价[J]. 草业科学, 2017, 34(3): 439-448. doi:
      REN X, ZHENG J H, YAN K, XU T B.  Evaluation reliability of grassland net primary productivity estimates using different meteorological interpolation methods[J]. Pratacultural Science, 2017, 34(3): 439-448. doi:

    37. [37]

      龚相文, 李玉强, 王旭洋, 牛亚毅, 连杰, 罗永, 余沛东.  科尔沁地区植被净初级生产力时空动态特征[J]. 草业科学, 2018, 35(10): 2306-2317. doi:
      GONG X W, LI Y Q, WANG X Y, NIU Y Y, LIAN J, LUO Y, YU P D.  Temporal-spatial dynamic changes of net primary productivity in Horqin region, China[J]. Pratacultural Science, 2018, 35(10): 2306-2317. doi:

    38. [38]

      孙成明, 刘涛, 陈雯, 陈瑛瑛, 田婷, 李建龙.  南方草地NPP的水热估算模型及其应用[J]. 生态环境学报, 2013, 22(9): 1457-1461. doi:
      SUN C M, LIU T, CHEN W, CHEN Y Y, TIAN T, LI J L.  Estimation model and the application of grassland NPP based on precipitation and temperature in south China[J]. Ecology and Environmental Sciences, 2013, 22(9): 1457-1461. doi:

    39. [39]

      王耀斌, 赵永华, 韩磊, 奥勇.  2000 – 2015年秦巴山区植被净初级生产力时空变化及其趋动因子[J]. 应用生态学报, 2018, 29(7): 2372-2381.
      WANG Y B, ZHAN Y H, HAN L, AO Y.  Spatiotemporal variation of vegetation net primary productivity and its driving factors from 2000 to 2015 in Qinling-Daba Mountains, China[J]. Chinese Journal of Applied EcologyBG视讯, 2018, 29(7): 2372-2381.

    1. [1]

      何楷迪孙建陈秋计 . 气候要素和土壤质地对青藏高原草地净初级生产力和降水利用率的影响. 草业科学, 2019, 36(4): 1053-1065. doi:  BG视讯

    2. [2]

      王莉娜宋伟宏张金龙马晓芳赵鸿雁黄晓东 . 祁连山国家公园植被净初级生产力时空演变及驱动因素分析. 草业科学, 2020, 37(8): 1458-1474. doi: 

    3. [3]

      许国成 . 甘南夏河高寒草甸高原鼢鼠和高原鼠兔秋季栖息地特征. 草业科学, 2015, 9(10): 1675-1681. doi: 

    4. [4]

      冯璐丁康屈媛媛Farhat Ullah KHAN杜峰徐学选 . 黄土塬边坡植被类型对土壤孔隙的影响. 草业科学, 2020, 37(4): 625-634. doi: 

    5. [5]

      李培玺储炳银滕臻王亮孙孟瑶曹小青徐小牛 . 巢湖湖滨带不同植被类型土壤碳氮磷生态化学计量学特征. 草业科学, 2020, 37(8): 1448-1457. doi:  BG视讯

    6. [6]

      张建财张丽郑艺田向军周宇 . 基于LPJ模型的中亚地区植被净初级生产力与蒸散模拟. 草业科学, 2015, 9(11): 1721-1729. doi: 

    7. [7]

      李文龙蔡栋苏文亮魏巍朱高峰赵志刚许静 . 基于SPEI指数与GIS技术的高寒草地干旱生态风险动态评价. 草业科学, 2019, 36(6): 1531-1543. doi:  BG视讯

    8. [8]

      任 璇郑江华穆 晨闫 凯徐廷豹 . 不同气象插值方法在新疆草地NPP估算中的可靠性评价. 草业科学, 2017, 11(3): 439-448. doi: 

    9. [9]

      刘海江尹思阳孙聪彭福利周澎 . 2000-2010年锡林郭勒草原NPP时空变化及其气候响应. 草业科学, 2015, 9(11): 1709-1720. doi: 

    10. [10]

      田永生郭阳耀1张培??王利生杨艳丽李红星BG视讯 . 区域净初级生产力动态及其与气象因子的关系. 草业科学, 2010, 4(2): 8-17.

    11. [11]

      宋清洁崔霞张瑶瑶孟宝平高金龙向宇轩 . 基于小型无人机与MODIS数据的草地植被覆盖度研究——以甘南州为例. 草业科学, 2017, 11(1): 40-50. doi: 

    12. [12]

       henanshengludizhibeijingdiyixingshengchanligusuanjiqishikongfenbu. caoyekexue, 2011, 5(10): 1839-1844.

    13. [13]

       qihoubianhuaduixinjiangtianshanshanquziranzhibeijingdiyixingshengchanlideyingxiang. caoyekexue, 2009, 3(2): 11-18.

    14. [14]

       jiyujingchujishengchanlibianhuadecaodituihuajianceyanjiu. caoyekexue, 2011, 5(4): 536-542.

    15. [15]

      侯扶江宁娇冯琦胜 . 草原放牧系统的类型与生产力. 草业科学, 2016, 10(3): 353-367. doi: 

    16. [16]

       kezhoudiqutianrancaodishengchanlipingjia. caoyekexue, 2011, 5(1): 53-58.

    17. [17]

      ??莺夏文韬梁天刚BG视讯 . 陆地生态系统净初级生产力的时空动态模拟研究进展. 草业科学, 2010, 4(2): 77-88.

    18. [18]

       1981-2001nianneimenggucaodijingchujishengchanlishikongbianhuatezheng. caoyekexue, 2011, 5(11): 2016-2025.

    19. [19]

      赵振媛张小蕾李国梅樊文涛崔霞李重阳加杨东知旦巴顿珠唐增 . 生态奖补对牧民生产生活和植被覆盖度的影响: 以甘南藏族自治州为例. 草业科学, 2019, 36(6): 1674-1682. doi: 

    20. [20]

       dangchangxiantanzimuchangcaodileixingjishengchanlifenxi. caoyekexue, 2011, 5(3): 420-425.

  • BG视讯

    图 1  研究区及采样点示意图

    Figure 1.  Location of study areas and the distribution of sampling sites

    图 2  BG视讯 甘南草地NPP实测值与模拟值的比较

    Figure 2.  BG视讯 Comparison of measured and stimulated NPP of grassland in Gannan

    图 3  BG视讯 2011 – 2014年每15日日均NPP和NPP累积值变化趋势

    Figure 3.  Variation of daily mean NPP per 15 days and ccumulative NPP from 2011 to 2014

    图 4  BG视讯 2011 – 2014年甘南植被年均NPP 的空间分布

    Figure 4.  BG视讯 Spatial distribution of mean annual NPP of vegetation in Gannan from 2011 to 2014

    图 5  甘南州植被NPP与海拔分布间的关系

    Figure 5.  Relationships between vegetation NPP and altitude in Gannan

    图 6  甘南州植被NPP与坡向间的关系

    Figure 6.  Relationships between vegetation NPP and slope aspect in Gannan

    图 7  BG视讯 甘南州植被NPP与坡度间的关系

    Figure 7.  Relationships between vegetation NPP and slope gradient in Gannan

    图 8  本研究NPP模拟结果与其他研究估算结果的比较

    Figure 8.  BG视讯 Comparison of NPP in this study with other estimations

    表 1  不同植被类型的MODIS-GPP产品参数

    Table 1.  BG视讯 MODIS-GPP product parameters for different vegetation types

    参数变量 Parameter variable样地类型 Type of sample site
    ENFEBFDNFDBFMFWL
    εmax/(kg C·MJ–1)0.001 0080.001 1590.001 1030.001 0440.001 1160.000 8
    Tmin/°C–8–8–8–8–8–8
    Tmax/°C8.319.0910.447.948.5011.39
    参数变量 Parameter variable样地类型 Type of sample site
    WgrassCshrubOshrubAmeadowCrop
    εmax/(kg C·MJ–1)0.000 7680.000 8880.000 7740.000 680.000 68
    Tmin/°C–8–8–8–8–8
    Tmax/°C11.398.618.8012.0212.02
     ENF,常绿针叶林;EBF,常绿阔叶林;DNF,落叶针叶林;DBF,落叶阔叶林;MF,混交林;WL,多树草地;Wgrass,稀树草地;Cshrub,郁闭灌丛;Oshrub,稀疏灌丛;Ameadow,高寒草甸;Crop,农田。下表同。
     ENF, evergreen needleleaf forest; EBF, evergreen broadleaf forest; DNF, deciduous needleleaf forest; DBF, deciduous broadleaf forest; MF, mixed forest; WL, grassy woodland; Wgrass, wooded grassland; Cshrub, closed shrubland; Oshrub, open shrubland; Ameadow, alpine meadow; Crop, croplands; similarly for the following tables.
    下载: 导出CSV

    表 2  甘南地区不同植被类型NPP模拟结果

    Table 2.  BG视讯 Simulation results of NPP in different vegetation types in Gannan

    植被类型
    Vegetation type
    面积
    Area/hm2
    面积比
    Area ratio/%
    NPP平均值
    Average NPP/[g C·(m2·a)–1]
    总NPP
    Total NPP/[× 1010 g C·a–1]
    ENF 97 825 2.66 705.18 68.98
    DNF 2 425 0.07 560.29 1.36
    DBF 15 423 0.42 745.33 11.50
    MF 428 825 11.66 734.72 315.07
    Cshrub 259 125 7.05 456.21 118.21
    Oshrub 30 525 0.83 408.80 12.48
    WL 24 075 0.65 500.12 12.04
    Wgrass 825 0.02 450.86 0.37
    Ameadow 2 723 300 74.07 426.83 1 162.38
    Crop 89 275 2.43 452.49 40.40
    下载: 导出CSV
    BG视讯
  • <tr id='0nxy4'><strong id='0nxy4'></strong><small id='0nxy4'></small><button id='0nxy4'></button><li id='0nxy4'><noscript id='0nxy4'><big id='0nxy4'></big><dt id='0nxy4'></dt></noscript></li></tr><ol id='0nxy4'><option id='0nxy4'><table id='0nxy4'><blockquote id='0nxy4'><tbody id='0nxy4'></tbody></blockquote></table></option></ol><u id='0nxy4'></u><kbd id='0nxy4'><kbd id='0nxy4'></kbd></kbd>

      <code id='0nxy4'><strong id='0nxy4'></strong></code>

      <fieldset id='0nxy4'></fieldset>
            <span id='0nxy4'></span>

                <ins id='0nxy4'></ins>
                    <acronym id='0nxy4'><em id='0nxy4'></em><td id='0nxy4'><div id='0nxy4'></div></td></acronym><address id='0nxy4'><big id='0nxy4'><big id='0nxy4'></big><legend id='0nxy4'></legend></big></address>

                      <i id='0nxy4'><div id='0nxy4'><ins id='0nxy4'></ins></div></i>
                      <i id='0nxy4'></i>
                        • <dl id='0nxy4'></dl>
                        • 加载中
                        • 图(8)表(2)
                          计量
                          • PDF下载量:  20
                          • 文章访问数:  338
                          • HTML全文浏览量:  245
                          文章相关
                          • 通讯作者:  陈迪,
                          • 收稿日期:  2019-01-09
                          • 刊出日期:  2019-10-01
                          通讯作者: 陈斌,
                          • 1. 

                            shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

                          1. 本站搜索
                          2. 百度学术搜索
                          3. 万方数据库搜索
                          4. CNKI搜索

                          /

                          返回文章
                          BG视讯